Solve for x
x=\sqrt{21}+3\approx 7.582575695
x=3-\sqrt{21}\approx -1.582575695
Graph
Share
Copied to clipboard
-x+\frac{1}{2}x^{2}=2x+6
Add \frac{1}{2}x^{2} to both sides.
-x+\frac{1}{2}x^{2}-2x=6
Subtract 2x from both sides.
-x+\frac{1}{2}x^{2}-2x-6=0
Subtract 6 from both sides.
-3x+\frac{1}{2}x^{2}-6=0
Combine -x and -2x to get -3x.
\frac{1}{2}x^{2}-3x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-2\left(-6\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-3\right)±\sqrt{9+12}}{2\times \frac{1}{2}}
Multiply -2 times -6.
x=\frac{-\left(-3\right)±\sqrt{21}}{2\times \frac{1}{2}}
Add 9 to 12.
x=\frac{3±\sqrt{21}}{2\times \frac{1}{2}}
The opposite of -3 is 3.
x=\frac{3±\sqrt{21}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{21}+3}{1}
Now solve the equation x=\frac{3±\sqrt{21}}{1} when ± is plus. Add 3 to \sqrt{21}.
x=\sqrt{21}+3
Divide 3+\sqrt{21} by 1.
x=\frac{3-\sqrt{21}}{1}
Now solve the equation x=\frac{3±\sqrt{21}}{1} when ± is minus. Subtract \sqrt{21} from 3.
x=3-\sqrt{21}
Divide 3-\sqrt{21} by 1.
x=\sqrt{21}+3 x=3-\sqrt{21}
The equation is now solved.
-x+\frac{1}{2}x^{2}=2x+6
Add \frac{1}{2}x^{2} to both sides.
-x+\frac{1}{2}x^{2}-2x=6
Subtract 2x from both sides.
-3x+\frac{1}{2}x^{2}=6
Combine -x and -2x to get -3x.
\frac{1}{2}x^{2}-3x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}-3x}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{3}{\frac{1}{2}}\right)x=\frac{6}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-6x=\frac{6}{\frac{1}{2}}
Divide -3 by \frac{1}{2} by multiplying -3 by the reciprocal of \frac{1}{2}.
x^{2}-6x=12
Divide 6 by \frac{1}{2} by multiplying 6 by the reciprocal of \frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=12+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=12+9
Square -3.
x^{2}-6x+9=21
Add 12 to 9.
\left(x-3\right)^{2}=21
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x-3=\sqrt{21} x-3=-\sqrt{21}
Simplify.
x=\sqrt{21}+3 x=3-\sqrt{21}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}