Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x-\frac{1}{2}x^{2}=-\frac{3}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
-x-\frac{1}{2}x^{2}+\frac{3}{2}x=0
Add \frac{3}{2}x to both sides.
\frac{1}{2}x-\frac{1}{2}x^{2}=0
Combine -x and \frac{3}{2}x to get \frac{1}{2}x.
x\left(\frac{1}{2}-\frac{1}{2}x\right)=0
Factor out x.
x=0 x=1
To find equation solutions, solve x=0 and \frac{1-x}{2}=0.
-x-\frac{1}{2}x^{2}=-\frac{3}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
-x-\frac{1}{2}x^{2}+\frac{3}{2}x=0
Add \frac{3}{2}x to both sides.
\frac{1}{2}x-\frac{1}{2}x^{2}=0
Combine -x and \frac{3}{2}x to get \frac{1}{2}x.
-\frac{1}{2}x^{2}+\frac{1}{2}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{1}{2} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\frac{1}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \left(\frac{1}{2}\right)^{2}.
x=\frac{-\frac{1}{2}±\frac{1}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{0}{-1}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{1}{2}}{-1} when ± is plus. Add -\frac{1}{2} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -1.
x=-\frac{1}{-1}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{1}{2}}{-1} when ± is minus. Subtract \frac{1}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide -1 by -1.
x=0 x=1
The equation is now solved.
-x-\frac{1}{2}x^{2}=-\frac{3}{2}x
Subtract \frac{1}{2}x^{2} from both sides.
-x-\frac{1}{2}x^{2}+\frac{3}{2}x=0
Add \frac{3}{2}x to both sides.
\frac{1}{2}x-\frac{1}{2}x^{2}=0
Combine -x and \frac{3}{2}x to get \frac{1}{2}x.
-\frac{1}{2}x^{2}+\frac{1}{2}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+\frac{1}{2}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{1}{2}}{-\frac{1}{2}}x=\frac{0}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-x=\frac{0}{-\frac{1}{2}}
Divide \frac{1}{2} by -\frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-x=0
Divide 0 by -\frac{1}{2} by multiplying 0 by the reciprocal of -\frac{1}{2}.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Simplify.
x=1 x=0
Add \frac{1}{2} to both sides of the equation.