Evaluate
6x^{4}-x^{3}+2x^{2}-x-1
Expand
6x^{4}-x^{3}+2x^{2}-x-1
Graph
Share
Copied to clipboard
\frac{-x}{3}+\frac{1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since -\frac{x}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since \frac{-x}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\left(\frac{3\times 2x^{2}}{3}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3}{3}.
\frac{-x+1}{3}+\frac{3\times 2x^{2}-x-2}{3}\left(3x^{2}+2\right)
Since \frac{3\times 2x^{2}}{3} and \frac{-x-2}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right)
Do the multiplications in 3\times 2x^{2}-x-2.
\frac{-x+1}{3}+\frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Express \frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right) as a single fraction.
\frac{-x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Since \frac{-x+1}{3} and \frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4}{3}
Do the multiplications in -x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right).
\frac{-3x-3+18x^{4}+6x^{2}-3x^{3}}{3}
Combine like terms in -x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4.
-x-1+6x^{4}+2x^{2}-x^{3}
Divide each term of -3x-3+18x^{4}+6x^{2}-3x^{3} by 3 to get -x-1+6x^{4}+2x^{2}-x^{3}.
\frac{-x}{3}+\frac{1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since -\frac{x}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since \frac{-x}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\left(\frac{3\times 2x^{2}}{3}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3}{3}.
\frac{-x+1}{3}+\frac{3\times 2x^{2}-x-2}{3}\left(3x^{2}+2\right)
Since \frac{3\times 2x^{2}}{3} and \frac{-x-2}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right)
Do the multiplications in 3\times 2x^{2}-x-2.
\frac{-x+1}{3}+\frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Express \frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right) as a single fraction.
\frac{-x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Since \frac{-x+1}{3} and \frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4}{3}
Do the multiplications in -x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right).
\frac{-3x-3+18x^{4}+6x^{2}-3x^{3}}{3}
Combine like terms in -x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4.
-x-1+6x^{4}+2x^{2}-x^{3}
Divide each term of -3x-3+18x^{4}+6x^{2}-3x^{3} by 3 to get -x-1+6x^{4}+2x^{2}-x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}