Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x}{3}+\frac{1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since -\frac{x}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since \frac{-x}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\left(\frac{3\times 2x^{2}}{3}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3}{3}.
\frac{-x+1}{3}+\frac{3\times 2x^{2}-x-2}{3}\left(3x^{2}+2\right)
Since \frac{3\times 2x^{2}}{3} and \frac{-x-2}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right)
Do the multiplications in 3\times 2x^{2}-x-2.
\frac{-x+1}{3}+\frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Express \frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right) as a single fraction.
\frac{-x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Since \frac{-x+1}{3} and \frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4}{3}
Do the multiplications in -x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right).
\frac{-3x-3+18x^{4}+6x^{2}-3x^{3}}{3}
Combine like terms in -x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4.
-x-1+6x^{4}+2x^{2}-x^{3}
Divide each term of -3x-3+18x^{4}+6x^{2}-3x^{3} by 3 to get -x-1+6x^{4}+2x^{2}-x^{3}.
\frac{-x}{3}+\frac{1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since -\frac{x}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1}{3}+\left(2x^{2}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
Since \frac{-x}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\left(\frac{3\times 2x^{2}}{3}+\frac{-x-2}{3}\right)\left(3x^{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3}{3}.
\frac{-x+1}{3}+\frac{3\times 2x^{2}-x-2}{3}\left(3x^{2}+2\right)
Since \frac{3\times 2x^{2}}{3} and \frac{-x-2}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1}{3}+\frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right)
Do the multiplications in 3\times 2x^{2}-x-2.
\frac{-x+1}{3}+\frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Express \frac{6x^{2}-x-2}{3}\left(3x^{2}+2\right) as a single fraction.
\frac{-x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3}
Since \frac{-x+1}{3} and \frac{\left(6x^{2}-x-2\right)\left(3x^{2}+2\right)}{3} have the same denominator, add them by adding their numerators.
\frac{-x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4}{3}
Do the multiplications in -x+1+\left(6x^{2}-x-2\right)\left(3x^{2}+2\right).
\frac{-3x-3+18x^{4}+6x^{2}-3x^{3}}{3}
Combine like terms in -x+1+18x^{4}+12x^{2}-3x^{3}-2x-6x^{2}-4.
-x-1+6x^{4}+2x^{2}-x^{3}
Divide each term of -3x-3+18x^{4}+6x^{2}-3x^{3} by 3 to get -x-1+6x^{4}+2x^{2}-x^{3}.