Solve for x (complex solution)
x=\frac{-\sqrt{3}i+5}{2}\approx 2.5-0.866025404i
x=\frac{5+\sqrt{3}i}{2}\approx 2.5+0.866025404i
Graph
Share
Copied to clipboard
-\left(x-2\right)x+\left(x-2\right)\times 2+x-3=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
-\left(x^{2}-2x\right)+\left(x-2\right)\times 2+x-3=0
Use the distributive property to multiply x-2 by x.
-x^{2}+2x+\left(x-2\right)\times 2+x-3=0
To find the opposite of x^{2}-2x, find the opposite of each term.
-x^{2}+2x+2x-4+x-3=0
Use the distributive property to multiply x-2 by 2.
-x^{2}+4x-4+x-3=0
Combine 2x and 2x to get 4x.
-x^{2}+5x-4-3=0
Combine 4x and x to get 5x.
-x^{2}+5x-7=0
Subtract 3 from -4 to get -7.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\left(-7\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25-28}}{2\left(-1\right)}
Multiply 4 times -7.
x=\frac{-5±\sqrt{-3}}{2\left(-1\right)}
Add 25 to -28.
x=\frac{-5±\sqrt{3}i}{2\left(-1\right)}
Take the square root of -3.
x=\frac{-5±\sqrt{3}i}{-2}
Multiply 2 times -1.
x=\frac{-5+\sqrt{3}i}{-2}
Now solve the equation x=\frac{-5±\sqrt{3}i}{-2} when ± is plus. Add -5 to i\sqrt{3}.
x=\frac{-\sqrt{3}i+5}{2}
Divide -5+i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{3}i}{-2} when ± is minus. Subtract i\sqrt{3} from -5.
x=\frac{5+\sqrt{3}i}{2}
Divide -5-i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i+5}{2} x=\frac{5+\sqrt{3}i}{2}
The equation is now solved.
-\left(x-2\right)x+\left(x-2\right)\times 2+x-3=0
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
-\left(x^{2}-2x\right)+\left(x-2\right)\times 2+x-3=0
Use the distributive property to multiply x-2 by x.
-x^{2}+2x+\left(x-2\right)\times 2+x-3=0
To find the opposite of x^{2}-2x, find the opposite of each term.
-x^{2}+2x+2x-4+x-3=0
Use the distributive property to multiply x-2 by 2.
-x^{2}+4x-4+x-3=0
Combine 2x and 2x to get 4x.
-x^{2}+5x-4-3=0
Combine 4x and x to get 5x.
-x^{2}+5x-7=0
Subtract 3 from -4 to get -7.
-x^{2}+5x=7
Add 7 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+5x}{-1}=\frac{7}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=\frac{7}{-1}
Divide 5 by -1.
x^{2}-5x=-7
Divide 7 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-7+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{3}{4}
Add -7 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{3}i}{2} x-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}