Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-x+1=\frac{1}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-x+1-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
-x^{2}-x+1-\frac{1}{4}=0
Subtracting \frac{1}{4} from itself leaves 0.
-x^{2}-x+\frac{3}{4}=0
Subtract \frac{1}{4} from 1.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times \frac{3}{4}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and \frac{3}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times \frac{3}{4}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+3}}{2\left(-1\right)}
Multiply 4 times \frac{3}{4}.
x=\frac{-\left(-1\right)±\sqrt{4}}{2\left(-1\right)}
Add 1 to 3.
x=\frac{-\left(-1\right)±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{1±2}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±2}{-2}
Multiply 2 times -1.
x=\frac{3}{-2}
Now solve the equation x=\frac{1±2}{-2} when ± is plus. Add 1 to 2.
x=-\frac{3}{2}
Divide 3 by -2.
x=-\frac{1}{-2}
Now solve the equation x=\frac{1±2}{-2} when ± is minus. Subtract 2 from 1.
x=\frac{1}{2}
Divide -1 by -2.
x=-\frac{3}{2} x=\frac{1}{2}
The equation is now solved.
-x^{2}-x+1=\frac{1}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-x+1-1=\frac{1}{4}-1
Subtract 1 from both sides of the equation.
-x^{2}-x=\frac{1}{4}-1
Subtracting 1 from itself leaves 0.
-x^{2}-x=-\frac{3}{4}
Subtract 1 from \frac{1}{4}.
\frac{-x^{2}-x}{-1}=-\frac{\frac{3}{4}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{\frac{3}{4}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=-\frac{\frac{3}{4}}{-1}
Divide -1 by -1.
x^{2}+x=\frac{3}{4}
Divide -\frac{3}{4} by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{3}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{3+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=1
Add \frac{3}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=1
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+\frac{1}{2}=1 x+\frac{1}{2}=-1
Simplify.
x=\frac{1}{2} x=-\frac{3}{2}
Subtract \frac{1}{2} from both sides of the equation.