Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x+\frac{3}{4}+x^{2}=2x+3
Add x^{2} to both sides.
-x+\frac{3}{4}+x^{2}-2x=3
Subtract 2x from both sides.
-x+\frac{3}{4}+x^{2}-2x-3=0
Subtract 3 from both sides.
-x-\frac{9}{4}+x^{2}-2x=0
Subtract 3 from \frac{3}{4} to get -\frac{9}{4}.
-3x-\frac{9}{4}+x^{2}=0
Combine -x and -2x to get -3x.
x^{2}-3x-\frac{9}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{9}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -\frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{9}{4}\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+9}}{2}
Multiply -4 times -\frac{9}{4}.
x=\frac{-\left(-3\right)±\sqrt{18}}{2}
Add 9 to 9.
x=\frac{-\left(-3\right)±3\sqrt{2}}{2}
Take the square root of 18.
x=\frac{3±3\sqrt{2}}{2}
The opposite of -3 is 3.
x=\frac{3\sqrt{2}+3}{2}
Now solve the equation x=\frac{3±3\sqrt{2}}{2} when ± is plus. Add 3 to 3\sqrt{2}.
x=\frac{3-3\sqrt{2}}{2}
Now solve the equation x=\frac{3±3\sqrt{2}}{2} when ± is minus. Subtract 3\sqrt{2} from 3.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
The equation is now solved.
-x+\frac{3}{4}+x^{2}=2x+3
Add x^{2} to both sides.
-x+\frac{3}{4}+x^{2}-2x=3
Subtract 2x from both sides.
-x+x^{2}-2x=3-\frac{3}{4}
Subtract \frac{3}{4} from both sides.
-x+x^{2}-2x=\frac{9}{4}
Subtract \frac{3}{4} from 3 to get \frac{9}{4}.
-3x+x^{2}=\frac{9}{4}
Combine -x and -2x to get -3x.
x^{2}-3x=\frac{9}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{9+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{9}{2}
Add \frac{9}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{2}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{2}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3\sqrt{2}}{2} x-\frac{3}{2}=-\frac{3\sqrt{2}}{2}
Simplify.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
Add \frac{3}{2} to both sides of the equation.