Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Share
Copied to clipboard
-x+\frac{1}{2}x=\frac{67}{12}+x+\frac{20}{12}-2
Least common multiple of 12 and 3 is 12. Convert \frac{67}{12} and \frac{5}{3} to fractions with denominator 12.
-x+\frac{1}{2}x=\frac{67+20}{12}+x-2
Since \frac{67}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
-x+\frac{1}{2}x=\frac{87}{12}+x-2
Add 67 and 20 to get 87.
-x+\frac{1}{2}x=\frac{29}{4}+x-2
Reduce the fraction \frac{87}{12} to lowest terms by extracting and canceling out 3.
-x+\frac{1}{2}x=\frac{29}{4}+x-\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
-x+\frac{1}{2}x=\frac{29-8}{4}+x
Since \frac{29}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-x+\frac{1}{2}x=\frac{21}{4}+x
Subtract 8 from 29 to get 21.
-x+\frac{1}{2}x-x=\frac{21}{4}
Subtract x from both sides.
-x-\frac{1}{2}x=\frac{21}{4}
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-\frac{3}{2}x=\frac{21}{4}
Combine -x and -\frac{1}{2}x to get -\frac{3}{2}x.
x=\frac{21}{4}\left(-\frac{2}{3}\right)
Multiply both sides by -\frac{2}{3}, the reciprocal of -\frac{3}{2}.
x=\frac{21\left(-2\right)}{4\times 3}
Multiply \frac{21}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-42}{12}
Do the multiplications in the fraction \frac{21\left(-2\right)}{4\times 3}.
x=-\frac{7}{2}
Reduce the fraction \frac{-42}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}