Skip to main content
Solve for v (complex solution)
Tick mark Image
Solve for v
Tick mark Image
Graph

Similar Problems from Web Search

Share

-vx=\sqrt[4]{3x-1}+1
Reorder the terms.
\left(-x\right)v=\sqrt[4]{3x-1}+1
The equation is in standard form.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Divide both sides by -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Dividing by -x undoes the multiplication by -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Divide \sqrt[4]{3x-1}+1 by -x.
-vx=\sqrt[4]{3x-1}+1
Reorder the terms.
\left(-x\right)v=\sqrt[4]{3x-1}+1
The equation is in standard form.
\frac{\left(-x\right)v}{-x}=\frac{\sqrt[4]{3x-1}+1}{-x}
Divide both sides by -x.
v=\frac{\sqrt[4]{3x-1}+1}{-x}
Dividing by -x undoes the multiplication by -x.
v=-\frac{\sqrt[4]{3x-1}+1}{x}
Divide \sqrt[4]{3x-1}+1 by -x.