Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

-v^{2}+6v-\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-\frac{1}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-6±\sqrt{36-4\left(-1\right)\left(-\frac{1}{2}\right)}}{2\left(-1\right)}
Square 6.
v=\frac{-6±\sqrt{36+4\left(-\frac{1}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
v=\frac{-6±\sqrt{36-2}}{2\left(-1\right)}
Multiply 4 times -\frac{1}{2}.
v=\frac{-6±\sqrt{34}}{2\left(-1\right)}
Add 36 to -2.
v=\frac{-6±\sqrt{34}}{-2}
Multiply 2 times -1.
v=\frac{\sqrt{34}-6}{-2}
Now solve the equation v=\frac{-6±\sqrt{34}}{-2} when ± is plus. Add -6 to \sqrt{34}.
v=-\frac{\sqrt{34}}{2}+3
Divide -6+\sqrt{34} by -2.
v=\frac{-\sqrt{34}-6}{-2}
Now solve the equation v=\frac{-6±\sqrt{34}}{-2} when ± is minus. Subtract \sqrt{34} from -6.
v=\frac{\sqrt{34}}{2}+3
Divide -6-\sqrt{34} by -2.
v=-\frac{\sqrt{34}}{2}+3 v=\frac{\sqrt{34}}{2}+3
The equation is now solved.
-v^{2}+6v-\frac{1}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-v^{2}+6v-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
Add \frac{1}{2} to both sides of the equation.
-v^{2}+6v=-\left(-\frac{1}{2}\right)
Subtracting -\frac{1}{2} from itself leaves 0.
-v^{2}+6v=\frac{1}{2}
Subtract -\frac{1}{2} from 0.
\frac{-v^{2}+6v}{-1}=\frac{\frac{1}{2}}{-1}
Divide both sides by -1.
v^{2}+\frac{6}{-1}v=\frac{\frac{1}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
v^{2}-6v=\frac{\frac{1}{2}}{-1}
Divide 6 by -1.
v^{2}-6v=-\frac{1}{2}
Divide \frac{1}{2} by -1.
v^{2}-6v+\left(-3\right)^{2}=-\frac{1}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-6v+9=-\frac{1}{2}+9
Square -3.
v^{2}-6v+9=\frac{17}{2}
Add -\frac{1}{2} to 9.
\left(v-3\right)^{2}=\frac{17}{2}
Factor v^{2}-6v+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-3\right)^{2}}=\sqrt{\frac{17}{2}}
Take the square root of both sides of the equation.
v-3=\frac{\sqrt{34}}{2} v-3=-\frac{\sqrt{34}}{2}
Simplify.
v=\frac{\sqrt{34}}{2}+3 v=-\frac{\sqrt{34}}{2}+3
Add 3 to both sides of the equation.