Solve for u
u = \frac{3 \sqrt{5} + 9}{2} \approx 7.854101966
u = \frac{9 - 3 \sqrt{5}}{2} \approx 1.145898034
Share
Copied to clipboard
-u^{2}+9u-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-9±\sqrt{81-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
Square 9.
u=\frac{-9±\sqrt{81+4\left(-9\right)}}{2\left(-1\right)}
Multiply -4 times -1.
u=\frac{-9±\sqrt{81-36}}{2\left(-1\right)}
Multiply 4 times -9.
u=\frac{-9±\sqrt{45}}{2\left(-1\right)}
Add 81 to -36.
u=\frac{-9±3\sqrt{5}}{2\left(-1\right)}
Take the square root of 45.
u=\frac{-9±3\sqrt{5}}{-2}
Multiply 2 times -1.
u=\frac{3\sqrt{5}-9}{-2}
Now solve the equation u=\frac{-9±3\sqrt{5}}{-2} when ± is plus. Add -9 to 3\sqrt{5}.
u=\frac{9-3\sqrt{5}}{2}
Divide -9+3\sqrt{5} by -2.
u=\frac{-3\sqrt{5}-9}{-2}
Now solve the equation u=\frac{-9±3\sqrt{5}}{-2} when ± is minus. Subtract 3\sqrt{5} from -9.
u=\frac{3\sqrt{5}+9}{2}
Divide -9-3\sqrt{5} by -2.
u=\frac{9-3\sqrt{5}}{2} u=\frac{3\sqrt{5}+9}{2}
The equation is now solved.
-u^{2}+9u-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-u^{2}+9u-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
-u^{2}+9u=-\left(-9\right)
Subtracting -9 from itself leaves 0.
-u^{2}+9u=9
Subtract -9 from 0.
\frac{-u^{2}+9u}{-1}=\frac{9}{-1}
Divide both sides by -1.
u^{2}+\frac{9}{-1}u=\frac{9}{-1}
Dividing by -1 undoes the multiplication by -1.
u^{2}-9u=\frac{9}{-1}
Divide 9 by -1.
u^{2}-9u=-9
Divide 9 by -1.
u^{2}-9u+\left(-\frac{9}{2}\right)^{2}=-9+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-9u+\frac{81}{4}=-9+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
u^{2}-9u+\frac{81}{4}=\frac{45}{4}
Add -9 to \frac{81}{4}.
\left(u-\frac{9}{2}\right)^{2}=\frac{45}{4}
Factor u^{2}-9u+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{9}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
u-\frac{9}{2}=\frac{3\sqrt{5}}{2} u-\frac{9}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
u=\frac{3\sqrt{5}+9}{2} u=\frac{9-3\sqrt{5}}{2}
Add \frac{9}{2} to both sides of the equation.
x ^ 2 -9x +9 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 9 rs = 9
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{2} - u s = \frac{9}{2} + u
Two numbers r and s sum up to 9 exactly when the average of the two numbers is \frac{1}{2}*9 = \frac{9}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{2} - u) (\frac{9}{2} + u) = 9
To solve for unknown quantity u, substitute these in the product equation rs = 9
\frac{81}{4} - u^2 = 9
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 9-\frac{81}{4} = -\frac{45}{4}
Simplify the expression by subtracting \frac{81}{4} on both sides
u^2 = \frac{45}{4} u = \pm\sqrt{\frac{45}{4}} = \pm \frac{\sqrt{45}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{2} - \frac{\sqrt{45}}{2} = 1.146 s = \frac{9}{2} + \frac{\sqrt{45}}{2} = 7.854
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}