Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-2t^{2}-8t+6=t
Multiply both sides of the equation by 2.
-2t^{2}-8t+6-t=0
Subtract t from both sides.
-2t^{2}-9t+6=0
Combine -8t and -t to get -9t.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -9 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-9\right)±\sqrt{81-4\left(-2\right)\times 6}}{2\left(-2\right)}
Square -9.
t=\frac{-\left(-9\right)±\sqrt{81+8\times 6}}{2\left(-2\right)}
Multiply -4 times -2.
t=\frac{-\left(-9\right)±\sqrt{81+48}}{2\left(-2\right)}
Multiply 8 times 6.
t=\frac{-\left(-9\right)±\sqrt{129}}{2\left(-2\right)}
Add 81 to 48.
t=\frac{9±\sqrt{129}}{2\left(-2\right)}
The opposite of -9 is 9.
t=\frac{9±\sqrt{129}}{-4}
Multiply 2 times -2.
t=\frac{\sqrt{129}+9}{-4}
Now solve the equation t=\frac{9±\sqrt{129}}{-4} when ± is plus. Add 9 to \sqrt{129}.
t=\frac{-\sqrt{129}-9}{4}
Divide 9+\sqrt{129} by -4.
t=\frac{9-\sqrt{129}}{-4}
Now solve the equation t=\frac{9±\sqrt{129}}{-4} when ± is minus. Subtract \sqrt{129} from 9.
t=\frac{\sqrt{129}-9}{4}
Divide 9-\sqrt{129} by -4.
t=\frac{-\sqrt{129}-9}{4} t=\frac{\sqrt{129}-9}{4}
The equation is now solved.
-2t^{2}-8t+6=t
Multiply both sides of the equation by 2.
-2t^{2}-8t+6-t=0
Subtract t from both sides.
-2t^{2}-9t+6=0
Combine -8t and -t to get -9t.
-2t^{2}-9t=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{-2t^{2}-9t}{-2}=-\frac{6}{-2}
Divide both sides by -2.
t^{2}+\left(-\frac{9}{-2}\right)t=-\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
t^{2}+\frac{9}{2}t=-\frac{6}{-2}
Divide -9 by -2.
t^{2}+\frac{9}{2}t=3
Divide -6 by -2.
t^{2}+\frac{9}{2}t+\left(\frac{9}{4}\right)^{2}=3+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{9}{2}t+\frac{81}{16}=3+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{9}{2}t+\frac{81}{16}=\frac{129}{16}
Add 3 to \frac{81}{16}.
\left(t+\frac{9}{4}\right)^{2}=\frac{129}{16}
Factor t^{2}+\frac{9}{2}t+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{9}{4}\right)^{2}}=\sqrt{\frac{129}{16}}
Take the square root of both sides of the equation.
t+\frac{9}{4}=\frac{\sqrt{129}}{4} t+\frac{9}{4}=-\frac{\sqrt{129}}{4}
Simplify.
t=\frac{\sqrt{129}-9}{4} t=\frac{-\sqrt{129}-9}{4}
Subtract \frac{9}{4} from both sides of the equation.