Solve for t
t=\sqrt{6}+4\approx 6.449489743
t=4-\sqrt{6}\approx 1.550510257
Share
Copied to clipboard
-t^{2}+8t=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-t^{2}+8t-10=10-10
Subtract 10 from both sides of the equation.
-t^{2}+8t-10=0
Subtracting 10 from itself leaves 0.
t=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square 8.
t=\frac{-8±\sqrt{64+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-8±\sqrt{64-40}}{2\left(-1\right)}
Multiply 4 times -10.
t=\frac{-8±\sqrt{24}}{2\left(-1\right)}
Add 64 to -40.
t=\frac{-8±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
t=\frac{-8±2\sqrt{6}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{6}-8}{-2}
Now solve the equation t=\frac{-8±2\sqrt{6}}{-2} when ± is plus. Add -8 to 2\sqrt{6}.
t=4-\sqrt{6}
Divide -8+2\sqrt{6} by -2.
t=\frac{-2\sqrt{6}-8}{-2}
Now solve the equation t=\frac{-8±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from -8.
t=\sqrt{6}+4
Divide -8-2\sqrt{6} by -2.
t=4-\sqrt{6} t=\sqrt{6}+4
The equation is now solved.
-t^{2}+8t=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}+8t}{-1}=\frac{10}{-1}
Divide both sides by -1.
t^{2}+\frac{8}{-1}t=\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-8t=\frac{10}{-1}
Divide 8 by -1.
t^{2}-8t=-10
Divide 10 by -1.
t^{2}-8t+\left(-4\right)^{2}=-10+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=-10+16
Square -4.
t^{2}-8t+16=6
Add -10 to 16.
\left(t-4\right)^{2}=6
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
t-4=\sqrt{6} t-4=-\sqrt{6}
Simplify.
t=\sqrt{6}+4 t=4-\sqrt{6}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}