Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-t^{2}+6t-9+11
Subtract 18 from 9 to get -9.
-t^{2}+6t+2
Add -9 and 11 to get 2.
factor(-t^{2}+6t-9+11)
Subtract 18 from 9 to get -9.
factor(-t^{2}+6t+2)
Add -9 and 11 to get 2.
-t^{2}+6t+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6±\sqrt{36-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square 6.
t=\frac{-6±\sqrt{36+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-6±\sqrt{36+8}}{2\left(-1\right)}
Multiply 4 times 2.
t=\frac{-6±\sqrt{44}}{2\left(-1\right)}
Add 36 to 8.
t=\frac{-6±2\sqrt{11}}{2\left(-1\right)}
Take the square root of 44.
t=\frac{-6±2\sqrt{11}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{11}-6}{-2}
Now solve the equation t=\frac{-6±2\sqrt{11}}{-2} when ± is plus. Add -6 to 2\sqrt{11}.
t=3-\sqrt{11}
Divide -6+2\sqrt{11} by -2.
t=\frac{-2\sqrt{11}-6}{-2}
Now solve the equation t=\frac{-6±2\sqrt{11}}{-2} when ± is minus. Subtract 2\sqrt{11} from -6.
t=\sqrt{11}+3
Divide -6-2\sqrt{11} by -2.
-t^{2}+6t+2=-\left(t-\left(3-\sqrt{11}\right)\right)\left(t-\left(\sqrt{11}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\sqrt{11} for x_{1} and 3+\sqrt{11} for x_{2}.