Solve for t
t = \frac{\sqrt{145} + 5}{2} \approx 8.520797289
t=\frac{5-\sqrt{145}}{2}\approx -3.520797289
Share
Copied to clipboard
-t^{2}+5t+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\left(-1\right)\times 30}}{2\left(-1\right)}
Square 5.
t=\frac{-5±\sqrt{25+4\times 30}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-5±\sqrt{25+120}}{2\left(-1\right)}
Multiply 4 times 30.
t=\frac{-5±\sqrt{145}}{2\left(-1\right)}
Add 25 to 120.
t=\frac{-5±\sqrt{145}}{-2}
Multiply 2 times -1.
t=\frac{\sqrt{145}-5}{-2}
Now solve the equation t=\frac{-5±\sqrt{145}}{-2} when ± is plus. Add -5 to \sqrt{145}.
t=\frac{5-\sqrt{145}}{2}
Divide -5+\sqrt{145} by -2.
t=\frac{-\sqrt{145}-5}{-2}
Now solve the equation t=\frac{-5±\sqrt{145}}{-2} when ± is minus. Subtract \sqrt{145} from -5.
t=\frac{\sqrt{145}+5}{2}
Divide -5-\sqrt{145} by -2.
t=\frac{5-\sqrt{145}}{2} t=\frac{\sqrt{145}+5}{2}
The equation is now solved.
-t^{2}+5t+30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-t^{2}+5t+30-30=-30
Subtract 30 from both sides of the equation.
-t^{2}+5t=-30
Subtracting 30 from itself leaves 0.
\frac{-t^{2}+5t}{-1}=-\frac{30}{-1}
Divide both sides by -1.
t^{2}+\frac{5}{-1}t=-\frac{30}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-5t=-\frac{30}{-1}
Divide 5 by -1.
t^{2}-5t=30
Divide -30 by -1.
t^{2}-5t+\left(-\frac{5}{2}\right)^{2}=30+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-5t+\frac{25}{4}=30+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-5t+\frac{25}{4}=\frac{145}{4}
Add 30 to \frac{25}{4}.
\left(t-\frac{5}{2}\right)^{2}=\frac{145}{4}
Factor t^{2}-5t+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
t-\frac{5}{2}=\frac{\sqrt{145}}{2} t-\frac{5}{2}=-\frac{\sqrt{145}}{2}
Simplify.
t=\frac{\sqrt{145}+5}{2} t=\frac{5-\sqrt{145}}{2}
Add \frac{5}{2} to both sides of the equation.
x ^ 2 -5x -30 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 5 rs = -30
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{2} - u s = \frac{5}{2} + u
Two numbers r and s sum up to 5 exactly when the average of the two numbers is \frac{1}{2}*5 = \frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{2} - u) (\frac{5}{2} + u) = -30
To solve for unknown quantity u, substitute these in the product equation rs = -30
\frac{25}{4} - u^2 = -30
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -30-\frac{25}{4} = -\frac{145}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{145}{4} u = \pm\sqrt{\frac{145}{4}} = \pm \frac{\sqrt{145}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{2} - \frac{\sqrt{145}}{2} = -3.521 s = \frac{5}{2} + \frac{\sqrt{145}}{2} = 8.521
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}