Factor
-\left(t-88\right)\left(t+50\right)
Evaluate
-\left(t-88\right)\left(t+50\right)
Share
Copied to clipboard
a+b=38 ab=-4400=-4400
Factor the expression by grouping. First, the expression needs to be rewritten as -t^{2}+at+bt+4400. To find a and b, set up a system to be solved.
-1,4400 -2,2200 -4,1100 -5,880 -8,550 -10,440 -11,400 -16,275 -20,220 -22,200 -25,176 -40,110 -44,100 -50,88 -55,80
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4400.
-1+4400=4399 -2+2200=2198 -4+1100=1096 -5+880=875 -8+550=542 -10+440=430 -11+400=389 -16+275=259 -20+220=200 -22+200=178 -25+176=151 -40+110=70 -44+100=56 -50+88=38 -55+80=25
Calculate the sum for each pair.
a=88 b=-50
The solution is the pair that gives sum 38.
\left(-t^{2}+88t\right)+\left(-50t+4400\right)
Rewrite -t^{2}+38t+4400 as \left(-t^{2}+88t\right)+\left(-50t+4400\right).
-t\left(t-88\right)-50\left(t-88\right)
Factor out -t in the first and -50 in the second group.
\left(t-88\right)\left(-t-50\right)
Factor out common term t-88 by using distributive property.
-t^{2}+38t+4400=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-38±\sqrt{38^{2}-4\left(-1\right)\times 4400}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-38±\sqrt{1444-4\left(-1\right)\times 4400}}{2\left(-1\right)}
Square 38.
t=\frac{-38±\sqrt{1444+4\times 4400}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-38±\sqrt{1444+17600}}{2\left(-1\right)}
Multiply 4 times 4400.
t=\frac{-38±\sqrt{19044}}{2\left(-1\right)}
Add 1444 to 17600.
t=\frac{-38±138}{2\left(-1\right)}
Take the square root of 19044.
t=\frac{-38±138}{-2}
Multiply 2 times -1.
t=\frac{100}{-2}
Now solve the equation t=\frac{-38±138}{-2} when ± is plus. Add -38 to 138.
t=-50
Divide 100 by -2.
t=-\frac{176}{-2}
Now solve the equation t=\frac{-38±138}{-2} when ± is minus. Subtract 138 from -38.
t=88
Divide -176 by -2.
-t^{2}+38t+4400=-\left(t-\left(-50\right)\right)\left(t-88\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -50 for x_{1} and 88 for x_{2}.
-t^{2}+38t+4400=-\left(t+50\right)\left(t-88\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 -38x -4400 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 38 rs = -4400
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 19 - u s = 19 + u
Two numbers r and s sum up to 38 exactly when the average of the two numbers is \frac{1}{2}*38 = 19. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(19 - u) (19 + u) = -4400
To solve for unknown quantity u, substitute these in the product equation rs = -4400
361 - u^2 = -4400
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4400-361 = -4761
Simplify the expression by subtracting 361 on both sides
u^2 = 4761 u = \pm\sqrt{4761} = \pm 69
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =19 - 69 = -50 s = 19 + 69 = 88
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}