Solve for d
\left\{\begin{matrix}d=-\frac{pz-2z+59}{p}\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }p=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{2z-59}{z+d}\text{, }&d\neq -z\\p\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }d=-\frac{59}{2}\end{matrix}\right.
Share
Copied to clipboard
\left(-p\right)d+\left(-p\right)z=-2z+59
Use the distributive property to multiply -p by d+z.
\left(-p\right)d=-2z+59-\left(-p\right)z
Subtract \left(-p\right)z from both sides.
-pd=-2z+59+pz
Multiply -1 and -1 to get 1.
\left(-p\right)d=pz-2z+59
The equation is in standard form.
\frac{\left(-p\right)d}{-p}=\frac{pz-2z+59}{-p}
Divide both sides by -p.
d=\frac{pz-2z+59}{-p}
Dividing by -p undoes the multiplication by -p.
d=-\frac{pz-2z+59}{p}
Divide zp-2z+59 by -p.
\left(-p\right)d+\left(-p\right)z=-2z+59
Use the distributive property to multiply -p by d+z.
-pz-dp=-2z+59
Reorder the terms.
\left(-z-d\right)p=-2z+59
Combine all terms containing p.
\left(-z-d\right)p=59-2z
The equation is in standard form.
\frac{\left(-z-d\right)p}{-z-d}=\frac{59-2z}{-z-d}
Divide both sides by -z-d.
p=\frac{59-2z}{-z-d}
Dividing by -z-d undoes the multiplication by -z-d.
p=-\frac{59-2z}{z+d}
Divide -2z+59 by -z-d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}