Evaluate
-\left(n+2\right)\left(n+3\right)n^{2}
Expand
-\left(n^{4}+5n^{3}+6n^{2}\right)
Share
Copied to clipboard
\left(-n^{2}\right)n^{2}+5\left(-n^{2}\right)n+6\left(-n^{2}\right)
Use the distributive property to multiply -n^{2} by n^{2}+5n+6.
-n^{4}+5\left(-1\right)n^{2}n+6\left(-1\right)n^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-n^{4}+5\left(-1\right)n^{3}+6\left(-1\right)n^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-n^{4}-5n^{3}+6\left(-1\right)n^{2}
Multiply 5 and -1 to get -5.
-n^{4}-5n^{3}-6n^{2}
Multiply 6 and -1 to get -6.
\left(-n^{2}\right)n^{2}+5\left(-n^{2}\right)n+6\left(-n^{2}\right)
Use the distributive property to multiply -n^{2} by n^{2}+5n+6.
-n^{4}+5\left(-1\right)n^{2}n+6\left(-1\right)n^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-n^{4}+5\left(-1\right)n^{3}+6\left(-1\right)n^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-n^{4}-5n^{3}+6\left(-1\right)n^{2}
Multiply 5 and -1 to get -5.
-n^{4}-5n^{3}-6n^{2}
Multiply 6 and -1 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}