Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

-m+3-m^{2}-3m=5
Add -1 and 4 to get 3.
-m+3-m^{2}-3m-5=0
Subtract 5 from both sides.
-m-2-m^{2}-3m=0
Subtract 5 from 3 to get -2.
-4m-2-m^{2}=0
Combine -m and -3m to get -4m.
-m^{2}-4m-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-\left(-4\right)±\sqrt{16-8}}{2\left(-1\right)}
Multiply 4 times -2.
m=\frac{-\left(-4\right)±\sqrt{8}}{2\left(-1\right)}
Add 16 to -8.
m=\frac{-\left(-4\right)±2\sqrt{2}}{2\left(-1\right)}
Take the square root of 8.
m=\frac{4±2\sqrt{2}}{2\left(-1\right)}
The opposite of -4 is 4.
m=\frac{4±2\sqrt{2}}{-2}
Multiply 2 times -1.
m=\frac{2\sqrt{2}+4}{-2}
Now solve the equation m=\frac{4±2\sqrt{2}}{-2} when ± is plus. Add 4 to 2\sqrt{2}.
m=-\sqrt{2}-2
Divide 4+2\sqrt{2} by -2.
m=\frac{4-2\sqrt{2}}{-2}
Now solve the equation m=\frac{4±2\sqrt{2}}{-2} when ± is minus. Subtract 2\sqrt{2} from 4.
m=\sqrt{2}-2
Divide 4-2\sqrt{2} by -2.
m=-\sqrt{2}-2 m=\sqrt{2}-2
The equation is now solved.
-m+3-m^{2}-3m=5
Add -1 and 4 to get 3.
-m-m^{2}-3m=5-3
Subtract 3 from both sides.
-m-m^{2}-3m=2
Subtract 3 from 5 to get 2.
-4m-m^{2}=2
Combine -m and -3m to get -4m.
-m^{2}-4m=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-m^{2}-4m}{-1}=\frac{2}{-1}
Divide both sides by -1.
m^{2}+\left(-\frac{4}{-1}\right)m=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}+4m=\frac{2}{-1}
Divide -4 by -1.
m^{2}+4m=-2
Divide 2 by -1.
m^{2}+4m+2^{2}=-2+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+4m+4=-2+4
Square 2.
m^{2}+4m+4=2
Add -2 to 4.
\left(m+2\right)^{2}=2
Factor m^{2}+4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+2\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
m+2=\sqrt{2} m+2=-\sqrt{2}
Simplify.
m=\sqrt{2}-2 m=-\sqrt{2}-2
Subtract 2 from both sides of the equation.