Solve for m
m = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
m=\frac{1-\sqrt{5}}{2}\approx -0.618033989
Share
Copied to clipboard
-m^{2}-m+1-2\left(-m\right)=0
Subtract 2\left(-m\right) from both sides.
-m^{2}-m+1-2\left(-1\right)m=0
Multiply -1 and 2 to get -2.
-m^{2}-m+1+2m=0
Multiply -2 and -1 to get 2.
-m^{2}+m+1=0
Combine -m and 2m to get m.
m=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
Square 1.
m=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-1±\sqrt{5}}{2\left(-1\right)}
Add 1 to 4.
m=\frac{-1±\sqrt{5}}{-2}
Multiply 2 times -1.
m=\frac{\sqrt{5}-1}{-2}
Now solve the equation m=\frac{-1±\sqrt{5}}{-2} when ± is plus. Add -1 to \sqrt{5}.
m=\frac{1-\sqrt{5}}{2}
Divide -1+\sqrt{5} by -2.
m=\frac{-\sqrt{5}-1}{-2}
Now solve the equation m=\frac{-1±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from -1.
m=\frac{\sqrt{5}+1}{2}
Divide -1-\sqrt{5} by -2.
m=\frac{1-\sqrt{5}}{2} m=\frac{\sqrt{5}+1}{2}
The equation is now solved.
-m^{2}-m+1-2\left(-m\right)=0
Subtract 2\left(-m\right) from both sides.
-m^{2}-m+1-2\left(-1\right)m=0
Multiply -1 and 2 to get -2.
-m^{2}-m+1+2m=0
Multiply -2 and -1 to get 2.
-m^{2}+m+1=0
Combine -m and 2m to get m.
-m^{2}+m=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-m^{2}+m}{-1}=-\frac{1}{-1}
Divide both sides by -1.
m^{2}+\frac{1}{-1}m=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-m=-\frac{1}{-1}
Divide 1 by -1.
m^{2}-m=1
Divide -1 by -1.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=1+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{\sqrt{5}}{2} m-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
m=\frac{\sqrt{5}+1}{2} m=\frac{1-\sqrt{5}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}