Solve for m
m = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
-m^{2}+5m=\frac{25}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-m^{2}+5m-\frac{25}{4}=\frac{25}{4}-\frac{25}{4}
Subtract \frac{25}{4} from both sides of the equation.
-m^{2}+5m-\frac{25}{4}=0
Subtracting \frac{25}{4} from itself leaves 0.
m=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-\frac{25}{4}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -\frac{25}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\left(-1\right)\left(-\frac{25}{4}\right)}}{2\left(-1\right)}
Square 5.
m=\frac{-5±\sqrt{25+4\left(-\frac{25}{4}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
m=\frac{-5±\sqrt{25-25}}{2\left(-1\right)}
Multiply 4 times -\frac{25}{4}.
m=\frac{-5±\sqrt{0}}{2\left(-1\right)}
Add 25 to -25.
m=-\frac{5}{2\left(-1\right)}
Take the square root of 0.
m=-\frac{5}{-2}
Multiply 2 times -1.
m=\frac{5}{2}
Divide -5 by -2.
-m^{2}+5m=\frac{25}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-m^{2}+5m}{-1}=\frac{\frac{25}{4}}{-1}
Divide both sides by -1.
m^{2}+\frac{5}{-1}m=\frac{\frac{25}{4}}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-5m=\frac{\frac{25}{4}}{-1}
Divide 5 by -1.
m^{2}-5m=-\frac{25}{4}
Divide \frac{25}{4} by -1.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-5m+\frac{25}{4}=\frac{-25+25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-5m+\frac{25}{4}=0
Add -\frac{25}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{5}{2}\right)^{2}=0
Factor m^{2}-5m+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
m-\frac{5}{2}=0 m-\frac{5}{2}=0
Simplify.
m=\frac{5}{2} m=\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.
m=\frac{5}{2}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}