Solve for f
f=-2-\frac{26}{x}
x\neq 0
Solve for x
x=-\frac{26}{f+2}
f\neq -2
Graph
Share
Copied to clipboard
\left(-f\right)x=4x^{2}+16+2x+5-4x^{2}+5
Calculate 4 to the power of 2 and get 16.
\left(-f\right)x=4x^{2}+21+2x-4x^{2}+5
Add 16 and 5 to get 21.
\left(-f\right)x=21+2x+5
Combine 4x^{2} and -4x^{2} to get 0.
\left(-f\right)x=26+2x
Add 21 and 5 to get 26.
-fx=2x+26
Reorder the terms.
\left(-x\right)f=2x+26
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{2x+26}{-x}
Divide both sides by -x.
f=\frac{2x+26}{-x}
Dividing by -x undoes the multiplication by -x.
f=-2-\frac{26}{x}
Divide 26+2x by -x.
\left(-f\right)x=4x^{2}+16+2x+5-4x^{2}+5
Calculate 4 to the power of 2 and get 16.
\left(-f\right)x=4x^{2}+21+2x-4x^{2}+5
Add 16 and 5 to get 21.
\left(-f\right)x=21+2x+5
Combine 4x^{2} and -4x^{2} to get 0.
\left(-f\right)x=26+2x
Add 21 and 5 to get 26.
\left(-f\right)x-2x=26
Subtract 2x from both sides.
-fx-2x=26
Reorder the terms.
\left(-f-2\right)x=26
Combine all terms containing x.
\frac{\left(-f-2\right)x}{-f-2}=\frac{26}{-f-2}
Divide both sides by -f-2.
x=\frac{26}{-f-2}
Dividing by -f-2 undoes the multiplication by -f-2.
x=-\frac{26}{f+2}
Divide 26 by -f-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}