- f ( x ) = 2 x \quad [ 1,3 ]
Solve for f
\left\{\begin{matrix}\\f=-2,6\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&f=-\frac{13}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-f\right)x=2,6x
Multiply 2 and 1,3 to get 2,6.
-fx=2,6x
Reorder the terms.
\left(-x\right)f=\frac{13x}{5}
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{13x}{5\left(-x\right)}
Divide both sides by -x.
f=\frac{13x}{5\left(-x\right)}
Dividing by -x undoes the multiplication by -x.
f=-\frac{13}{5}
Divide \frac{13x}{5} by -x.
\left(-f\right)x=2,6x
Multiply 2 and 1,3 to get 2,6.
\left(-f\right)x-2,6x=0
Subtract 2,6x from both sides.
-fx-2,6x=0
Reorder the terms.
\left(-f-2,6\right)x=0
Combine all terms containing x.
x=0
Divide 0 by -2,6-f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}