Skip to main content
Solve for f
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-f\right)x=\left(\left(x^{2}\right)^{3}-9\left(x^{2}\right)^{2}+27x^{2}-27\right)\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{2}-3\right)^{3}.
\left(-f\right)x=\left(x^{6}-9\left(x^{2}\right)^{2}+27x^{2}-27\right)\left(x+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(-f\right)x=\left(x^{6}-9x^{4}+27x^{2}-27\right)\left(x+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-f\right)x=\left(x^{6}-9x^{4}+27x^{2}-27\right)\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(-f\right)x=x^{8}+2x^{7}-8x^{6}-18x^{5}+18x^{4}+54x^{3}-54x-27
Use the distributive property to multiply x^{6}-9x^{4}+27x^{2}-27 by x^{2}+2x+1 and combine like terms.
-fx=x^{8}+2x^{7}-8x^{6}-18x^{5}+18x^{4}+54x^{3}-54x-27
Reorder the terms.
\left(-x\right)f=x^{8}+2x^{7}-8x^{6}-18x^{5}+18x^{4}+54x^{3}-54x-27
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{\left(x+1\right)^{2}\left(x^{2}-3\right)^{3}}{-x}
Divide both sides by -x.
f=\frac{\left(x+1\right)^{2}\left(x^{2}-3\right)^{3}}{-x}
Dividing by -x undoes the multiplication by -x.
f=-\frac{\left(x+1\right)^{2}\left(x^{2}-3\right)^{3}}{x}
Divide \left(-3+x^{2}\right)^{3}\left(1+x\right)^{2} by -x.