Solve for f
\left\{\begin{matrix}\\f=x\left(10x^{4}-19x^{2}+6\right)\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-f\right)x=-10x^{6}+19x^{4}-6x^{2}
Use the distributive property to multiply -2x^{3}+3x by 5x^{3}-2x and combine like terms.
-fx=-10x^{6}+19x^{4}-6x^{2}
Reorder the terms.
\left(-x\right)f=-10x^{6}+19x^{4}-6x^{2}
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{x^{2}\left(-10x^{4}+19x^{2}-6\right)}{-x}
Divide both sides by -x.
f=\frac{x^{2}\left(-10x^{4}+19x^{2}-6\right)}{-x}
Dividing by -x undoes the multiplication by -x.
f=10x^{5}-19x^{3}+6x
Divide x^{2}\left(-10x^{4}+19x^{2}-6\right) by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}