Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-f\right)x\left(x-2\right)\left(x-1\right)=x
Multiply both sides of the equation by \left(x-2\right)\left(x-1\right).
\left(\left(-f\right)x^{2}-2\left(-f\right)x\right)\left(x-1\right)=x
Use the distributive property to multiply \left(-f\right)x by x-2.
\left(\left(-f\right)x^{2}+2fx\right)\left(x-1\right)=x
Multiply -2 and -1 to get 2.
\left(-f\right)x^{3}-\left(-f\right)x^{2}+2fx^{2}-2fx=x
Use the distributive property to multiply \left(-f\right)x^{2}+2fx by x-1.
\left(-f\right)x^{3}+fx^{2}+2fx^{2}-2fx=x
Multiply -1 and -1 to get 1.
\left(-f\right)x^{3}+3fx^{2}-2fx=x
Combine fx^{2} and 2fx^{2} to get 3fx^{2}.
-fx^{3}+3fx^{2}-2fx=x
Reorder the terms.
\left(-x^{3}+3x^{2}-2x\right)f=x
Combine all terms containing f.
\frac{\left(-x^{3}+3x^{2}-2x\right)f}{-x^{3}+3x^{2}-2x}=\frac{x}{-x^{3}+3x^{2}-2x}
Divide both sides by -x^{3}+3x^{2}-2x.
f=\frac{x}{-x^{3}+3x^{2}-2x}
Dividing by -x^{3}+3x^{2}-2x undoes the multiplication by -x^{3}+3x^{2}-2x.
f=\frac{1}{\left(1-x\right)\left(x-2\right)}
Divide x by -x^{3}+3x^{2}-2x.
\left(-f\right)x\left(x-2\right)\left(x-1\right)=x
Multiply both sides of the equation by \left(x-2\right)\left(x-1\right).
\left(\left(-f\right)x^{2}-2\left(-f\right)x\right)\left(x-1\right)=x
Use the distributive property to multiply \left(-f\right)x by x-2.
\left(\left(-f\right)x^{2}+2fx\right)\left(x-1\right)=x
Multiply -2 and -1 to get 2.
\left(-f\right)x^{3}-\left(-f\right)x^{2}+2fx^{2}-2fx=x
Use the distributive property to multiply \left(-f\right)x^{2}+2fx by x-1.
\left(-f\right)x^{3}+fx^{2}+2fx^{2}-2fx=x
Multiply -1 and -1 to get 1.
\left(-f\right)x^{3}+3fx^{2}-2fx=x
Combine fx^{2} and 2fx^{2} to get 3fx^{2}.
-fx^{3}+3fx^{2}-2fx=x
Reorder the terms.
\left(-x^{3}+3x^{2}-2x\right)f=x
Combine all terms containing f.
\frac{\left(-x^{3}+3x^{2}-2x\right)f}{-x^{3}+3x^{2}-2x}=\frac{x}{-x^{3}+3x^{2}-2x}
Divide both sides by -x^{3}+3x^{2}-2x.
f=\frac{x}{-x^{3}+3x^{2}-2x}
Dividing by -x^{3}+3x^{2}-2x undoes the multiplication by -x^{3}+3x^{2}-2x.
f=\frac{1}{\left(1-x\right)\left(x-2\right)}
Divide x by -x^{3}+3x^{2}-2x.