Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{1}{\left(1-x\right)\left(x-2\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\f\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{1}{\left(1-x\right)\left(x-2\right)}\text{, }&x\neq 2\text{ and }x\neq 1\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{f\left(f-4\right)}-3f}{2f}\text{; }x=\frac{\sqrt{f\left(f-4\right)}+3f}{2f}\text{, }&f\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{f\left(f-4\right)}-3f}{2f}\text{; }x=\frac{\sqrt{f\left(f-4\right)}+3f}{2f}\text{, }&f<0\text{ or }f\geq 4\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-f\right)x\left(x-2\right)\left(x-1\right)=x
Multiply both sides of the equation by \left(x-2\right)\left(x-1\right).
\left(\left(-f\right)x^{2}-2\left(-f\right)x\right)\left(x-1\right)=x
Use the distributive property to multiply \left(-f\right)x by x-2.
\left(\left(-f\right)x^{2}+2fx\right)\left(x-1\right)=x
Multiply -2 and -1 to get 2.
\left(-f\right)x^{3}-\left(-f\right)x^{2}+2fx^{2}-2fx=x
Use the distributive property to multiply \left(-f\right)x^{2}+2fx by x-1.
\left(-f\right)x^{3}+fx^{2}+2fx^{2}-2fx=x
Multiply -1 and -1 to get 1.
\left(-f\right)x^{3}+3fx^{2}-2fx=x
Combine fx^{2} and 2fx^{2} to get 3fx^{2}.
-fx^{3}+3fx^{2}-2fx=x
Reorder the terms.
\left(-x^{3}+3x^{2}-2x\right)f=x
Combine all terms containing f.
\frac{\left(-x^{3}+3x^{2}-2x\right)f}{-x^{3}+3x^{2}-2x}=\frac{x}{-x^{3}+3x^{2}-2x}
Divide both sides by -x^{3}+3x^{2}-2x.
f=\frac{x}{-x^{3}+3x^{2}-2x}
Dividing by -x^{3}+3x^{2}-2x undoes the multiplication by -x^{3}+3x^{2}-2x.
f=\frac{1}{\left(1-x\right)\left(x-2\right)}
Divide x by -x^{3}+3x^{2}-2x.
\left(-f\right)x\left(x-2\right)\left(x-1\right)=x
Multiply both sides of the equation by \left(x-2\right)\left(x-1\right).
\left(\left(-f\right)x^{2}-2\left(-f\right)x\right)\left(x-1\right)=x
Use the distributive property to multiply \left(-f\right)x by x-2.
\left(\left(-f\right)x^{2}+2fx\right)\left(x-1\right)=x
Multiply -2 and -1 to get 2.
\left(-f\right)x^{3}-\left(-f\right)x^{2}+2fx^{2}-2fx=x
Use the distributive property to multiply \left(-f\right)x^{2}+2fx by x-1.
\left(-f\right)x^{3}+fx^{2}+2fx^{2}-2fx=x
Multiply -1 and -1 to get 1.
\left(-f\right)x^{3}+3fx^{2}-2fx=x
Combine fx^{2} and 2fx^{2} to get 3fx^{2}.
-fx^{3}+3fx^{2}-2fx=x
Reorder the terms.
\left(-x^{3}+3x^{2}-2x\right)f=x
Combine all terms containing f.
\frac{\left(-x^{3}+3x^{2}-2x\right)f}{-x^{3}+3x^{2}-2x}=\frac{x}{-x^{3}+3x^{2}-2x}
Divide both sides by -x^{3}+3x^{2}-2x.
f=\frac{x}{-x^{3}+3x^{2}-2x}
Dividing by -x^{3}+3x^{2}-2x undoes the multiplication by -x^{3}+3x^{2}-2x.
f=\frac{1}{\left(1-x\right)\left(x-2\right)}
Divide x by -x^{3}+3x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}