Solve for f
f=-\frac{3}{5}-\frac{2}{3x}
x\neq 0
Solve for x
x=-\frac{10}{3\left(5f+3\right)}
f\neq -\frac{3}{5}
Graph
Share
Copied to clipboard
-fx=\frac{3}{5}x+\frac{2}{3}
Reorder the terms.
\left(-x\right)f=\frac{3x}{5}+\frac{2}{3}
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{\frac{3x}{5}+\frac{2}{3}}{-x}
Divide both sides by -x.
f=\frac{\frac{3x}{5}+\frac{2}{3}}{-x}
Dividing by -x undoes the multiplication by -x.
f=-\frac{3}{5}-\frac{2}{3x}
Divide \frac{3x}{5}+\frac{2}{3} by -x.
\left(-f\right)x-\frac{3}{5}x=\frac{2}{3}
Subtract \frac{3}{5}x from both sides.
-fx-\frac{3}{5}x=\frac{2}{3}
Reorder the terms.
\left(-f-\frac{3}{5}\right)x=\frac{2}{3}
Combine all terms containing x.
\frac{\left(-f-\frac{3}{5}\right)x}{-f-\frac{3}{5}}=\frac{\frac{2}{3}}{-f-\frac{3}{5}}
Divide both sides by -f-\frac{3}{5}.
x=\frac{\frac{2}{3}}{-f-\frac{3}{5}}
Dividing by -f-\frac{3}{5} undoes the multiplication by -f-\frac{3}{5}.
x=-\frac{10}{3\left(5f+3\right)}
Divide \frac{2}{3} by -f-\frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}