Skip to main content
Solve for f
Tick mark Image

Similar Problems from Web Search

Share

\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times 0.6\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Multiply -6 and 0.6 to get -3.6.
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times \frac{3}{5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=\frac{1\times 3}{2\times 5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\left(-f\right)\left(-3.6\right)=\frac{3}{10}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=3\times 0.3-\frac{1}{2}\times 0.6\times 16
Cancel out 10 and 10.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times 0.6\times 16
Multiply 3 and 0.3 to get 0.9.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times \frac{3}{5}\times 16
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1\times 3}{2\times 5}\times 16
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3}{10}\times 16
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3\times 16}{10}
Express \frac{3}{10}\times 16 as a single fraction.
\left(-f\right)\left(-3.6\right)=0.9-\frac{48}{10}
Multiply 3 and 16 to get 48.
\left(-f\right)\left(-3.6\right)=0.9-\frac{24}{5}
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{24}{5}
Convert decimal number 0.9 to fraction \frac{9}{10}.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{48}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{9}{10} and \frac{24}{5} to fractions with denominator 10.
\left(-f\right)\left(-3.6\right)=\frac{9-48}{10}
Since \frac{9}{10} and \frac{48}{10} have the same denominator, subtract them by subtracting their numerators.
\left(-f\right)\left(-3.6\right)=-\frac{39}{10}
Subtract 48 from 9 to get -39.
-f=\frac{-\frac{39}{10}}{-3.6}
Divide both sides by -3.6.
-f=\frac{-39}{10\left(-3.6\right)}
Express \frac{-\frac{39}{10}}{-3.6} as a single fraction.
-f=\frac{-39}{-36}
Multiply 10 and -3.6 to get -36.
-f=\frac{13}{12}
Reduce the fraction \frac{-39}{-36} to lowest terms by extracting and canceling out -3.
f=-\frac{13}{12}
Multiply both sides by -1.