Solve for f
f = -\frac{13}{12} = -1\frac{1}{12} \approx -1.083333333
Share
Copied to clipboard
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times 0.6\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Multiply -6 and 0.6 to get -3.6.
\left(-f\right)\left(-3.6\right)=\frac{1}{2}\times \frac{3}{5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=\frac{1\times 3}{2\times 5}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\left(-f\right)\left(-3.6\right)=\frac{3}{10}\times 10\times 0.3-\frac{1}{2}\times 0.6\times 16
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=3\times 0.3-\frac{1}{2}\times 0.6\times 16
Cancel out 10 and 10.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times 0.6\times 16
Multiply 3 and 0.3 to get 0.9.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1}{2}\times \frac{3}{5}\times 16
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=0.9-\frac{1\times 3}{2\times 5}\times 16
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3}{10}\times 16
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\left(-f\right)\left(-3.6\right)=0.9-\frac{3\times 16}{10}
Express \frac{3}{10}\times 16 as a single fraction.
\left(-f\right)\left(-3.6\right)=0.9-\frac{48}{10}
Multiply 3 and 16 to get 48.
\left(-f\right)\left(-3.6\right)=0.9-\frac{24}{5}
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{24}{5}
Convert decimal number 0.9 to fraction \frac{9}{10}.
\left(-f\right)\left(-3.6\right)=\frac{9}{10}-\frac{48}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{9}{10} and \frac{24}{5} to fractions with denominator 10.
\left(-f\right)\left(-3.6\right)=\frac{9-48}{10}
Since \frac{9}{10} and \frac{48}{10} have the same denominator, subtract them by subtracting their numerators.
\left(-f\right)\left(-3.6\right)=-\frac{39}{10}
Subtract 48 from 9 to get -39.
-f=\frac{-\frac{39}{10}}{-3.6}
Divide both sides by -3.6.
-f=\frac{-39}{10\left(-3.6\right)}
Express \frac{-\frac{39}{10}}{-3.6} as a single fraction.
-f=\frac{-39}{-36}
Multiply 10 and -3.6 to get -36.
-f=\frac{13}{12}
Reduce the fraction \frac{-39}{-36} to lowest terms by extracting and canceling out -3.
f=-\frac{13}{12}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}