Solve for c
c=-\frac{x^{3}+1000x+250}{5x^{2}}
x\neq 0
Graph
Share
Copied to clipboard
\left(-c\right)x\times 5x=5x\times 200+5\times 50+xx^{2}
Multiply both sides of the equation by 5x, the least common multiple of x,5.
\left(-c\right)x\times 5x=5x\times 200+5\times 50+x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-c\right)x^{2}\times 5=5x\times 200+5\times 50+x^{3}
Multiply x and x to get x^{2}.
\left(-c\right)x^{2}\times 5=1000x+5\times 50+x^{3}
Multiply 5 and 200 to get 1000.
\left(-c\right)x^{2}\times 5=1000x+250+x^{3}
Multiply 5 and 50 to get 250.
-5cx^{2}=1000x+250+x^{3}
Multiply -1 and 5 to get -5.
\left(-5x^{2}\right)c=x^{3}+1000x+250
The equation is in standard form.
\frac{\left(-5x^{2}\right)c}{-5x^{2}}=\frac{x^{3}+1000x+250}{-5x^{2}}
Divide both sides by -5x^{2}.
c=\frac{x^{3}+1000x+250}{-5x^{2}}
Dividing by -5x^{2} undoes the multiplication by -5x^{2}.
c=-\frac{x}{5}-\frac{200x+50}{x^{2}}
Divide 1000x+250+x^{3} by -5x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}