Solve for c
c = \frac{\sqrt{41} + 5}{4} \approx 2.850781059
c=\frac{5-\sqrt{41}}{4}\approx -0.350781059
Share
Copied to clipboard
-c^{2}+\frac{5}{2}c+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{5}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\left(-1\right)}}{2\left(-1\right)}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
c=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}+4}}{2\left(-1\right)}
Multiply -4 times -1.
c=\frac{-\frac{5}{2}±\sqrt{\frac{41}{4}}}{2\left(-1\right)}
Add \frac{25}{4} to 4.
c=\frac{-\frac{5}{2}±\frac{\sqrt{41}}{2}}{2\left(-1\right)}
Take the square root of \frac{41}{4}.
c=\frac{-\frac{5}{2}±\frac{\sqrt{41}}{2}}{-2}
Multiply 2 times -1.
c=\frac{\sqrt{41}-5}{-2\times 2}
Now solve the equation c=\frac{-\frac{5}{2}±\frac{\sqrt{41}}{2}}{-2} when ± is plus. Add -\frac{5}{2} to \frac{\sqrt{41}}{2}.
c=\frac{5-\sqrt{41}}{4}
Divide \frac{-5+\sqrt{41}}{2} by -2.
c=\frac{-\sqrt{41}-5}{-2\times 2}
Now solve the equation c=\frac{-\frac{5}{2}±\frac{\sqrt{41}}{2}}{-2} when ± is minus. Subtract \frac{\sqrt{41}}{2} from -\frac{5}{2}.
c=\frac{\sqrt{41}+5}{4}
Divide \frac{-5-\sqrt{41}}{2} by -2.
c=\frac{5-\sqrt{41}}{4} c=\frac{\sqrt{41}+5}{4}
The equation is now solved.
-c^{2}+\frac{5}{2}c+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-c^{2}+\frac{5}{2}c+1-1=-1
Subtract 1 from both sides of the equation.
-c^{2}+\frac{5}{2}c=-1
Subtracting 1 from itself leaves 0.
\frac{-c^{2}+\frac{5}{2}c}{-1}=-\frac{1}{-1}
Divide both sides by -1.
c^{2}+\frac{\frac{5}{2}}{-1}c=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
c^{2}-\frac{5}{2}c=-\frac{1}{-1}
Divide \frac{5}{2} by -1.
c^{2}-\frac{5}{2}c=1
Divide -1 by -1.
c^{2}-\frac{5}{2}c+\left(-\frac{5}{4}\right)^{2}=1+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-\frac{5}{2}c+\frac{25}{16}=1+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
c^{2}-\frac{5}{2}c+\frac{25}{16}=\frac{41}{16}
Add 1 to \frac{25}{16}.
\left(c-\frac{5}{4}\right)^{2}=\frac{41}{16}
Factor c^{2}-\frac{5}{2}c+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{5}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
c-\frac{5}{4}=\frac{\sqrt{41}}{4} c-\frac{5}{4}=-\frac{\sqrt{41}}{4}
Simplify.
c=\frac{\sqrt{41}+5}{4} c=\frac{5-\sqrt{41}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}