Factor
-b\left(b-8\right)\left(b+3\right)
Evaluate
-b\left(b-8\right)\left(b+3\right)
Share
Copied to clipboard
b\left(-b^{2}+5b+24\right)
Factor out b.
p+q=5 pq=-24=-24
Consider -b^{2}+5b+24. Factor the expression by grouping. First, the expression needs to be rewritten as -b^{2}+pb+qb+24. To find p and q, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
p=8 q=-3
The solution is the pair that gives sum 5.
\left(-b^{2}+8b\right)+\left(-3b+24\right)
Rewrite -b^{2}+5b+24 as \left(-b^{2}+8b\right)+\left(-3b+24\right).
-b\left(b-8\right)-3\left(b-8\right)
Factor out -b in the first and -3 in the second group.
\left(b-8\right)\left(-b-3\right)
Factor out common term b-8 by using distributive property.
b\left(b-8\right)\left(-b-3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}