Solve for x, y
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y=\frac{5\left(a+2\right)}{4}
Graph
Share
Copied to clipboard
-ax+2y=5
Consider the first equation. Reorder the terms.
y=\frac{\left(2a-4\right)x}{4}+5
Consider the second equation. Express \frac{2a-4}{4}x as a single fraction.
y=\frac{2ax-4x}{4}+5
Use the distributive property to multiply 2a-4 by x.
y-\frac{2ax-4x}{4}=5
Subtract \frac{2ax-4x}{4} from both sides.
4y-\left(2ax-4x\right)=20
Multiply both sides of the equation by 4.
4y-2ax+4x=20
To find the opposite of 2ax-4x, find the opposite of each term.
4y+\left(-2a+4\right)x=20
Combine all terms containing x,y.
\left(-a\right)x+2y=5,\left(4-2a\right)x+4y=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-a\right)x+2y=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\left(-a\right)x=-2y+5
Subtract 2y from both sides of the equation.
x=\left(-\frac{1}{a}\right)\left(-2y+5\right)
Divide both sides by -a.
x=\frac{2}{a}y-\frac{5}{a}
Multiply -\frac{1}{a} times -2y+5.
\left(4-2a\right)\left(\frac{2}{a}y-\frac{5}{a}\right)+4y=20
Substitute \frac{-5+2y}{a} for x in the other equation, \left(4-2a\right)x+4y=20.
\left(-4+\frac{8}{a}\right)y+10-\frac{20}{a}+4y=20
Multiply -2a+4 times \frac{-5+2y}{a}.
\frac{8}{a}y+10-\frac{20}{a}=20
Add -\frac{4\left(-2+a\right)y}{a} to 4y.
\frac{8}{a}y=10+\frac{20}{a}
Subtract -\frac{20}{a}+10 from both sides of the equation.
y=\frac{5a}{4}+\frac{5}{2}
Divide both sides by \frac{8}{a}.
x=\frac{2}{a}\left(\frac{5a}{4}+\frac{5}{2}\right)-\frac{5}{a}
Substitute \frac{5}{2}+\frac{5a}{4} for y in x=\frac{2}{a}y-\frac{5}{a}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{5}{2}+\frac{5}{a}-\frac{5}{a}
Multiply \frac{2}{a} times \frac{5}{2}+\frac{5a}{4}.
x=\frac{5}{2}
Add -\frac{5}{a} to \frac{5}{a}+\frac{5}{2}.
x=\frac{5}{2},y=\frac{5a}{4}+\frac{5}{2}
The system is now solved.
-ax+2y=5
Consider the first equation. Reorder the terms.
y=\frac{\left(2a-4\right)x}{4}+5
Consider the second equation. Express \frac{2a-4}{4}x as a single fraction.
y=\frac{2ax-4x}{4}+5
Use the distributive property to multiply 2a-4 by x.
y-\frac{2ax-4x}{4}=5
Subtract \frac{2ax-4x}{4} from both sides.
4y-\left(2ax-4x\right)=20
Multiply both sides of the equation by 4.
4y-2ax+4x=20
To find the opposite of 2ax-4x, find the opposite of each term.
4y+\left(-2a+4\right)x=20
Combine all terms containing x,y.
\left(-a\right)x+2y=5,\left(4-2a\right)x+4y=20
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\20\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right))\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-a&2\\-2a+4&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-a&2\\4-2a&4\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{\left(-a\right)\times 4-2\left(4-2a\right)}&-\frac{2}{\left(-a\right)\times 4-2\left(4-2a\right)}\\-\frac{4-2a}{\left(-a\right)\times 4-2\left(4-2a\right)}&-\frac{a}{\left(-a\right)\times 4-2\left(4-2a\right)}\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\-\frac{a}{4}+\frac{1}{2}&\frac{a}{8}\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5+\frac{1}{4}\times 20\\\left(-\frac{a}{4}+\frac{1}{2}\right)\times 5+\frac{a}{8}\times 20\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{5a}{4}+\frac{5}{2}\end{matrix}\right)
Do the arithmetic.
x=\frac{5}{2},y=\frac{5a}{4}+\frac{5}{2}
Extract the matrix elements x and y.
-ax+2y=5
Consider the first equation. Reorder the terms.
y=\frac{\left(2a-4\right)x}{4}+5
Consider the second equation. Express \frac{2a-4}{4}x as a single fraction.
y=\frac{2ax-4x}{4}+5
Use the distributive property to multiply 2a-4 by x.
y-\frac{2ax-4x}{4}=5
Subtract \frac{2ax-4x}{4} from both sides.
4y-\left(2ax-4x\right)=20
Multiply both sides of the equation by 4.
4y-2ax+4x=20
To find the opposite of 2ax-4x, find the opposite of each term.
4y+\left(-2a+4\right)x=20
Combine all terms containing x,y.
\left(-a\right)x+2y=5,\left(4-2a\right)x+4y=20
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\left(4-2a\right)\left(-a\right)x+\left(4-2a\right)\times 2y=\left(4-2a\right)\times 5,\left(-a\right)\left(4-2a\right)x+\left(-a\right)\times 4y=\left(-a\right)\times 20
To make -ax and -2xa+4x equal, multiply all terms on each side of the first equation by -2a+4 and all terms on each side of the second by -a.
\left(-2a\left(2-a\right)\right)x+\left(8-4a\right)y=20-10a,\left(-2a\left(2-a\right)\right)x+\left(-4a\right)y=-20a
Simplify.
\left(-2a\left(2-a\right)\right)x+2a\left(2-a\right)x+\left(8-4a\right)y+4ay=20-10a+20a
Subtract \left(-2a\left(2-a\right)\right)x+\left(-4a\right)y=-20a from \left(-2a\left(2-a\right)\right)x+\left(8-4a\right)y=20-10a by subtracting like terms on each side of the equal sign.
\left(8-4a\right)y+4ay=20-10a+20a
Add -2\left(2-a\right)ax to 2\left(2-a\right)ax. Terms -2\left(2-a\right)ax and 2\left(2-a\right)ax cancel out, leaving an equation with only one variable that can be solved.
8y=20-10a+20a
Add 8y-4ya to 4ay.
8y=10a+20
Add 20-10a to 20a.
y=\frac{5a}{4}+\frac{5}{2}
Divide both sides by 8.
\left(4-2a\right)x+4\left(\frac{5a}{4}+\frac{5}{2}\right)=20
Substitute \frac{5}{2}+\frac{5a}{4} for y in \left(4-2a\right)x+4y=20. Because the resulting equation contains only one variable, you can solve for x directly.
\left(4-2a\right)x+5a+10=20
Multiply 4 times \frac{5}{2}+\frac{5a}{4}.
\left(4-2a\right)x=10-5a
Subtract 10+5a from both sides of the equation.
x=\frac{5}{2}
Divide both sides by -2a+4.
x=\frac{5}{2},y=\frac{5a}{4}+\frac{5}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}