Evaluate
-7a-4
Expand
-7a-4
Share
Copied to clipboard
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-8a+4-6a^{2}+3a\right)
Apply the distributive property by multiplying each term of 4+3a by each term of -2a+1.
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-5a+4-6a^{2}\right)
Combine -8a and 3a to get -5a.
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-5a\right)-4-\left(-6a^{2}\right)
To find the opposite of -5a+4-6a^{2}, find the opposite of each term.
\left(-a\right)\times 3a-3a\left(a+4\right)+5a-4-\left(-6a^{2}\right)
The opposite of -5a is 5a.
\left(-a\right)\times 3a-3a\left(a+4\right)+5a-4+6a^{2}
The opposite of -6a^{2} is 6a^{2}.
-3aa-3a\left(a+4\right)+5a-4+6a^{2}
Multiply -1 and 3 to get -3.
-3a^{2}-3a\left(a+4\right)+5a-4+6a^{2}
Multiply a and a to get a^{2}.
-3a^{2}-3a^{2}-12a+5a-4+6a^{2}
Use the distributive property to multiply -3a by a+4.
-6a^{2}-12a+5a-4+6a^{2}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
-6a^{2}-7a-4+6a^{2}
Combine -12a and 5a to get -7a.
-7a-4
Combine -6a^{2} and 6a^{2} to get 0.
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-8a+4-6a^{2}+3a\right)
Apply the distributive property by multiplying each term of 4+3a by each term of -2a+1.
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-5a+4-6a^{2}\right)
Combine -8a and 3a to get -5a.
\left(-a\right)\times 3a-3a\left(a+4\right)-\left(-5a\right)-4-\left(-6a^{2}\right)
To find the opposite of -5a+4-6a^{2}, find the opposite of each term.
\left(-a\right)\times 3a-3a\left(a+4\right)+5a-4-\left(-6a^{2}\right)
The opposite of -5a is 5a.
\left(-a\right)\times 3a-3a\left(a+4\right)+5a-4+6a^{2}
The opposite of -6a^{2} is 6a^{2}.
-3aa-3a\left(a+4\right)+5a-4+6a^{2}
Multiply -1 and 3 to get -3.
-3a^{2}-3a\left(a+4\right)+5a-4+6a^{2}
Multiply a and a to get a^{2}.
-3a^{2}-3a^{2}-12a+5a-4+6a^{2}
Use the distributive property to multiply -3a by a+4.
-6a^{2}-12a+5a-4+6a^{2}
Combine -3a^{2} and -3a^{2} to get -6a^{2}.
-6a^{2}-7a-4+6a^{2}
Combine -12a and 5a to get -7a.
-7a-4
Combine -6a^{2} and 6a^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}