Evaluate
\left(1-2a\right)a^{5}
Factor
\left(1-2a\right)a^{5}
Share
Copied to clipboard
-a^{6}+a^{5}+\frac{a^{8}}{-a^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}}{-a^{2}}+\frac{a^{8}}{-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a^{6}+a^{5} times \frac{-a^{2}}{-a^{2}}.
\frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}+a^{8}}{-a^{2}}
Since \frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}}{-a^{2}} and \frac{a^{8}}{-a^{2}} have the same denominator, add them by adding their numerators.
\frac{a^{8}-a^{7}+a^{8}}{-a^{2}}
Do the multiplications in \left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}+a^{8}.
\frac{2a^{8}-a^{7}}{-a^{2}}
Combine like terms in a^{8}-a^{7}+a^{8}.
\frac{\left(2a-1\right)a^{7}}{-a^{2}}
Factor the expressions that are not already factored in \frac{2a^{8}-a^{7}}{-a^{2}}.
\frac{\left(2a-1\right)a^{5}}{-1}
Cancel out a^{2} in both numerator and denominator.
-\left(2a-1\right)a^{5}
Anything divided by -1 gives its opposite.
\left(-2a+1\right)a^{5}
Use the distributive property to multiply -1 by 2a-1.
-2a^{6}+a^{5}
Use the distributive property to multiply -2a+1 by a^{5}.
factor(-a^{6}+a^{5}+\frac{a^{8}}{-a^{2}})
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
factor(\frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}}{-a^{2}}+\frac{a^{8}}{-a^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply -a^{6}+a^{5} times \frac{-a^{2}}{-a^{2}}.
factor(\frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}+a^{8}}{-a^{2}})
Since \frac{\left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}}{-a^{2}} and \frac{a^{8}}{-a^{2}} have the same denominator, add them by adding their numerators.
factor(\frac{a^{8}-a^{7}+a^{8}}{-a^{2}})
Do the multiplications in \left(-a^{6}+a^{5}\right)\left(-1\right)a^{2}+a^{8}.
factor(\frac{2a^{8}-a^{7}}{-a^{2}})
Combine like terms in a^{8}-a^{7}+a^{8}.
factor(\frac{\left(2a-1\right)a^{7}}{-a^{2}})
Factor the expressions that are not already factored in \frac{2a^{8}-a^{7}}{-a^{2}}.
factor(\frac{\left(2a-1\right)a^{5}}{-1})
Cancel out a^{2} in both numerator and denominator.
factor(-\left(2a-1\right)a^{5})
Anything divided by -1 gives its opposite.
factor(\left(-2a+1\right)a^{5})
Use the distributive property to multiply -1 by 2a-1.
factor(-2a^{6}+a^{5})
Use the distributive property to multiply -2a+1 by a^{5}.
a^{5}\left(-2a+1\right)
Factor out a^{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}