Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}+4a-\frac{5}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -\frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Square 4.
a=\frac{-4±\sqrt{16+4\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-4±\sqrt{16-10}}{2\left(-1\right)}
Multiply 4 times -\frac{5}{2}.
a=\frac{-4±\sqrt{6}}{2\left(-1\right)}
Add 16 to -10.
a=\frac{-4±\sqrt{6}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{6}-4}{-2}
Now solve the equation a=\frac{-4±\sqrt{6}}{-2} when ± is plus. Add -4 to \sqrt{6}.
a=-\frac{\sqrt{6}}{2}+2
Divide -4+\sqrt{6} by -2.
a=\frac{-\sqrt{6}-4}{-2}
Now solve the equation a=\frac{-4±\sqrt{6}}{-2} when ± is minus. Subtract \sqrt{6} from -4.
a=\frac{\sqrt{6}}{2}+2
Divide -4-\sqrt{6} by -2.
a=-\frac{\sqrt{6}}{2}+2 a=\frac{\sqrt{6}}{2}+2
The equation is now solved.
-a^{2}+4a-\frac{5}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-a^{2}+4a-\frac{5}{2}-\left(-\frac{5}{2}\right)=-\left(-\frac{5}{2}\right)
Add \frac{5}{2} to both sides of the equation.
-a^{2}+4a=-\left(-\frac{5}{2}\right)
Subtracting -\frac{5}{2} from itself leaves 0.
-a^{2}+4a=\frac{5}{2}
Subtract -\frac{5}{2} from 0.
\frac{-a^{2}+4a}{-1}=\frac{\frac{5}{2}}{-1}
Divide both sides by -1.
a^{2}+\frac{4}{-1}a=\frac{\frac{5}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-4a=\frac{\frac{5}{2}}{-1}
Divide 4 by -1.
a^{2}-4a=-\frac{5}{2}
Divide \frac{5}{2} by -1.
a^{2}-4a+\left(-2\right)^{2}=-\frac{5}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-\frac{5}{2}+4
Square -2.
a^{2}-4a+4=\frac{3}{2}
Add -\frac{5}{2} to 4.
\left(a-2\right)^{2}=\frac{3}{2}
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
a-2=\frac{\sqrt{6}}{2} a-2=-\frac{\sqrt{6}}{2}
Simplify.
a=\frac{\sqrt{6}}{2}+2 a=-\frac{\sqrt{6}}{2}+2
Add 2 to both sides of the equation.