Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-a=-a^{2}-2a+4
Add 3 and 1 to get 4.
-a+a^{2}=-2a+4
Add a^{2} to both sides.
-a+a^{2}+2a=4
Add 2a to both sides.
-a+a^{2}+2a-4=0
Subtract 4 from both sides.
a+a^{2}-4=0
Combine -a and 2a to get a.
a^{2}+a-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\left(-4\right)}}{2}
Square 1.
a=\frac{-1±\sqrt{1+16}}{2}
Multiply -4 times -4.
a=\frac{-1±\sqrt{17}}{2}
Add 1 to 16.
a=\frac{\sqrt{17}-1}{2}
Now solve the equation a=\frac{-1±\sqrt{17}}{2} when ± is plus. Add -1 to \sqrt{17}.
a=\frac{-\sqrt{17}-1}{2}
Now solve the equation a=\frac{-1±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from -1.
a=\frac{\sqrt{17}-1}{2} a=\frac{-\sqrt{17}-1}{2}
The equation is now solved.
-a=-a^{2}-2a+4
Add 3 and 1 to get 4.
-a+a^{2}=-2a+4
Add a^{2} to both sides.
-a+a^{2}+2a=4
Add 2a to both sides.
a+a^{2}=4
Combine -a and 2a to get a.
a^{2}+a=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=4+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+a+\frac{1}{4}=4+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+a+\frac{1}{4}=\frac{17}{4}
Add 4 to \frac{1}{4}.
\left(a+\frac{1}{2}\right)^{2}=\frac{17}{4}
Factor a^{2}+a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
a+\frac{1}{2}=\frac{\sqrt{17}}{2} a+\frac{1}{2}=-\frac{\sqrt{17}}{2}
Simplify.
a=\frac{\sqrt{17}-1}{2} a=\frac{-\sqrt{17}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.