Solve for Y
Y=\frac{\left(x-10\right)^{3}}{2}-15
Solve for x (complex solution)
x=\sqrt[3]{2\left(Y+15\right)}+10
x=e^{\frac{i\times 4\pi }{3}}\sqrt[3]{2\left(Y+15\right)}+10
x=e^{\frac{i\times 2\pi }{3}}\sqrt[3]{2\left(Y+15\right)}+10
Solve for x
x=\sqrt[3]{2\left(Y+15\right)}+10
Graph
Share
Copied to clipboard
-Y=-0.5\left(x^{3}-30x^{2}+300x-1000\right)+15
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-10\right)^{3}.
-Y=-0.5x^{3}+15x^{2}-150x+500+15
Use the distributive property to multiply -0.5 by x^{3}-30x^{2}+300x-1000.
-Y=-0.5x^{3}+15x^{2}-150x+515
Add 500 and 15 to get 515.
-Y=-\frac{x^{3}}{2}+15x^{2}-150x+515
The equation is in standard form.
\frac{-Y}{-1}=\frac{-\frac{x^{3}}{2}+15x^{2}-150x+515}{-1}
Divide both sides by -1.
Y=\frac{-\frac{x^{3}}{2}+15x^{2}-150x+515}{-1}
Dividing by -1 undoes the multiplication by -1.
Y=\frac{x^{3}}{2}-15x^{2}+150x-515
Divide -\frac{x^{3}}{2}+15x^{2}-150x+515 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}