Solve for Q
Q=-\frac{48}{6^{x}}
Solve for x
x=\log_{6}\left(-\frac{48}{Q}\right)
Q<0
Graph
Share
Copied to clipboard
-Q=\frac{6\times 12^{x+2}}{4^{x}\times 18^{x+1}}
The equation is in standard form.
\frac{-Q}{-1}=\frac{48\times 12^{x}}{-72^{x}}
Divide both sides by -1.
Q=\frac{48\times 12^{x}}{-72^{x}}
Dividing by -1 undoes the multiplication by -1.
Q=-48\times \left(\frac{1}{6}\right)^{x}
Divide \frac{48\times 12^{x}}{72^{x}} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}