Solve for I
\left\{\begin{matrix}I=-\frac{V}{3\Omega }\text{, }&\Omega \neq 0\\I\in \mathrm{R}\text{, }&V=0\text{ and }\Omega =0\end{matrix}\right.
Solve for V
V=-3I\Omega
Share
Copied to clipboard
\left(-I\right)\times 10\Omega +6V-I\times 8\Omega =12V
Add 12V to both sides. Anything plus zero gives itself.
-10I\Omega +6V-I\times 8\Omega =12V
Multiply -1 and 10 to get -10.
-10I\Omega +6V-8I\Omega =12V
Multiply -1 and 8 to get -8.
-18I\Omega +6V=12V
Combine -10I\Omega and -8I\Omega to get -18I\Omega .
-18I\Omega =12V-6V
Subtract 6V from both sides.
-18I\Omega =6V
Combine 12V and -6V to get 6V.
\left(-18\Omega \right)I=6V
The equation is in standard form.
\frac{\left(-18\Omega \right)I}{-18\Omega }=\frac{6V}{-18\Omega }
Divide both sides by -18\Omega .
I=\frac{6V}{-18\Omega }
Dividing by -18\Omega undoes the multiplication by -18\Omega .
I=-\frac{V}{3\Omega }
Divide 6V by -18\Omega .
-10I\Omega +6V-I\times 8\Omega -12V=0
Multiply -1 and 10 to get -10.
-10I\Omega +6V-8I\Omega -12V=0
Multiply -1 and 8 to get -8.
-18I\Omega +6V-12V=0
Combine -10I\Omega and -8I\Omega to get -18I\Omega .
-18I\Omega -6V=0
Combine 6V and -12V to get -6V.
-6V=18I\Omega
Add 18I\Omega to both sides. Anything plus zero gives itself.
\frac{-6V}{-6}=\frac{18I\Omega }{-6}
Divide both sides by -6.
V=\frac{18I\Omega }{-6}
Dividing by -6 undoes the multiplication by -6.
V=-3I\Omega
Divide 18I\Omega by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}