Solve for B
B=-\frac{14}{X}
X\neq 0
Solve for X
X=-\frac{14}{B}
B\neq 0
Share
Copied to clipboard
-BX=14
Reorder the terms.
\left(-X\right)B=14
The equation is in standard form.
\frac{\left(-X\right)B}{-X}=\frac{14}{-X}
Divide both sides by -X.
B=\frac{14}{-X}
Dividing by -X undoes the multiplication by -X.
B=-\frac{14}{X}
Divide 14 by -X.
\frac{\left(-B\right)X}{-B}=\frac{14}{-B}
Divide both sides by -B.
X=\frac{14}{-B}
Dividing by -B undoes the multiplication by -B.
X=-\frac{14}{B}
Divide 14 by -B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}