Evaluate
\frac{3x}{2}-\frac{873}{4}
Factor
\frac{3\left(2x-291\right)}{4}
Graph
Share
Copied to clipboard
1-7\times 34+\frac{3}{4}\times 25+x\times \frac{26}{4}\times \frac{3}{13}
Add -98 and 99 to get 1.
1-238+\frac{3}{4}\times 25+x\times \frac{26}{4}\times \frac{3}{13}
Multiply 7 and 34 to get 238.
-237+\frac{3}{4}\times 25+x\times \frac{26}{4}\times \frac{3}{13}
Subtract 238 from 1 to get -237.
-237+\frac{3\times 25}{4}+x\times \frac{26}{4}\times \frac{3}{13}
Express \frac{3}{4}\times 25 as a single fraction.
-237+\frac{75}{4}+x\times \frac{26}{4}\times \frac{3}{13}
Multiply 3 and 25 to get 75.
-\frac{948}{4}+\frac{75}{4}+x\times \frac{26}{4}\times \frac{3}{13}
Convert -237 to fraction -\frac{948}{4}.
\frac{-948+75}{4}+x\times \frac{26}{4}\times \frac{3}{13}
Since -\frac{948}{4} and \frac{75}{4} have the same denominator, add them by adding their numerators.
-\frac{873}{4}+x\times \frac{26}{4}\times \frac{3}{13}
Add -948 and 75 to get -873.
-\frac{873}{4}+x\times \frac{13}{2}\times \frac{3}{13}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
-\frac{873}{4}+x\times \frac{13\times 3}{2\times 13}
Multiply \frac{13}{2} times \frac{3}{13} by multiplying numerator times numerator and denominator times denominator.
-\frac{873}{4}+x\times \frac{3}{2}
Cancel out 13 in both numerator and denominator.
\frac{-873+6x}{4}
Factor out \frac{1}{4}.
6x-873
Consider -392+396-952+75+6x. Multiply and combine like terms.
3\left(2x-291\right)
Consider 6x-873. Factor out 3.
\frac{3\left(2x-291\right)}{4}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}