Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-40y=-96
Swap sides so that all variable terms are on the left hand side.
y^{2}-40y+96=0
Add 96 to both sides.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 96}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -40 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-40\right)±\sqrt{1600-4\times 96}}{2}
Square -40.
y=\frac{-\left(-40\right)±\sqrt{1600-384}}{2}
Multiply -4 times 96.
y=\frac{-\left(-40\right)±\sqrt{1216}}{2}
Add 1600 to -384.
y=\frac{-\left(-40\right)±8\sqrt{19}}{2}
Take the square root of 1216.
y=\frac{40±8\sqrt{19}}{2}
The opposite of -40 is 40.
y=\frac{8\sqrt{19}+40}{2}
Now solve the equation y=\frac{40±8\sqrt{19}}{2} when ± is plus. Add 40 to 8\sqrt{19}.
y=4\sqrt{19}+20
Divide 40+8\sqrt{19} by 2.
y=\frac{40-8\sqrt{19}}{2}
Now solve the equation y=\frac{40±8\sqrt{19}}{2} when ± is minus. Subtract 8\sqrt{19} from 40.
y=20-4\sqrt{19}
Divide 40-8\sqrt{19} by 2.
y=4\sqrt{19}+20 y=20-4\sqrt{19}
The equation is now solved.
y^{2}-40y=-96
Swap sides so that all variable terms are on the left hand side.
y^{2}-40y+\left(-20\right)^{2}=-96+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-40y+400=-96+400
Square -20.
y^{2}-40y+400=304
Add -96 to 400.
\left(y-20\right)^{2}=304
Factor y^{2}-40y+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-20\right)^{2}}=\sqrt{304}
Take the square root of both sides of the equation.
y-20=4\sqrt{19} y-20=-4\sqrt{19}
Simplify.
y=4\sqrt{19}+20 y=20-4\sqrt{19}
Add 20 to both sides of the equation.