Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(-9y+8\right)=0
Factor out y.
y=0 y=\frac{8}{9}
To find equation solutions, solve y=0 and -9y+8=0.
-9y^{2}+8y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-8±\sqrt{8^{2}}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 8 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-8±8}{2\left(-9\right)}
Take the square root of 8^{2}.
y=\frac{-8±8}{-18}
Multiply 2 times -9.
y=\frac{0}{-18}
Now solve the equation y=\frac{-8±8}{-18} when ± is plus. Add -8 to 8.
y=0
Divide 0 by -18.
y=-\frac{16}{-18}
Now solve the equation y=\frac{-8±8}{-18} when ± is minus. Subtract 8 from -8.
y=\frac{8}{9}
Reduce the fraction \frac{-16}{-18} to lowest terms by extracting and canceling out 2.
y=0 y=\frac{8}{9}
The equation is now solved.
-9y^{2}+8y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9y^{2}+8y}{-9}=\frac{0}{-9}
Divide both sides by -9.
y^{2}+\frac{8}{-9}y=\frac{0}{-9}
Dividing by -9 undoes the multiplication by -9.
y^{2}-\frac{8}{9}y=\frac{0}{-9}
Divide 8 by -9.
y^{2}-\frac{8}{9}y=0
Divide 0 by -9.
y^{2}-\frac{8}{9}y+\left(-\frac{4}{9}\right)^{2}=\left(-\frac{4}{9}\right)^{2}
Divide -\frac{8}{9}, the coefficient of the x term, by 2 to get -\frac{4}{9}. Then add the square of -\frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{8}{9}y+\frac{16}{81}=\frac{16}{81}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
\left(y-\frac{4}{9}\right)^{2}=\frac{16}{81}
Factor y^{2}-\frac{8}{9}y+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{4}{9}\right)^{2}}=\sqrt{\frac{16}{81}}
Take the square root of both sides of the equation.
y-\frac{4}{9}=\frac{4}{9} y-\frac{4}{9}=-\frac{4}{9}
Simplify.
y=\frac{8}{9} y=0
Add \frac{4}{9} to both sides of the equation.