Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(-9x+1\right)=0
Factor out x.
x=0 x=\frac{1}{9}
To find equation solutions, solve x=0 and -9x+1=0.
-9x^{2}+x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\left(-9\right)}
Take the square root of 1^{2}.
x=\frac{-1±1}{-18}
Multiply 2 times -9.
x=\frac{0}{-18}
Now solve the equation x=\frac{-1±1}{-18} when ± is plus. Add -1 to 1.
x=0
Divide 0 by -18.
x=-\frac{2}{-18}
Now solve the equation x=\frac{-1±1}{-18} when ± is minus. Subtract 1 from -1.
x=\frac{1}{9}
Reduce the fraction \frac{-2}{-18} to lowest terms by extracting and canceling out 2.
x=0 x=\frac{1}{9}
The equation is now solved.
-9x^{2}+x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+x}{-9}=\frac{0}{-9}
Divide both sides by -9.
x^{2}+\frac{1}{-9}x=\frac{0}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{1}{9}x=\frac{0}{-9}
Divide 1 by -9.
x^{2}-\frac{1}{9}x=0
Divide 0 by -9.
x^{2}-\frac{1}{9}x+\left(-\frac{1}{18}\right)^{2}=\left(-\frac{1}{18}\right)^{2}
Divide -\frac{1}{9}, the coefficient of the x term, by 2 to get -\frac{1}{18}. Then add the square of -\frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{9}x+\frac{1}{324}=\frac{1}{324}
Square -\frac{1}{18} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{18}\right)^{2}=\frac{1}{324}
Factor x^{2}-\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{18}\right)^{2}}=\sqrt{\frac{1}{324}}
Take the square root of both sides of the equation.
x-\frac{1}{18}=\frac{1}{18} x-\frac{1}{18}=-\frac{1}{18}
Simplify.
x=\frac{1}{9} x=0
Add \frac{1}{18} to both sides of the equation.