Solve for x (complex solution)
x=-\frac{\sqrt{2}i}{3}+1\approx 1-0.471404521i
x=\frac{\sqrt{2}i}{3}+1\approx 1+0.471404521i
Graph
Share
Copied to clipboard
-9x^{2}+18x=11
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-9x^{2}+18x-11=11-11
Subtract 11 from both sides of the equation.
-9x^{2}+18x-11=0
Subtracting 11 from itself leaves 0.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\left(-11\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 18 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-9\right)\left(-11\right)}}{2\left(-9\right)}
Square 18.
x=\frac{-18±\sqrt{324+36\left(-11\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-18±\sqrt{324-396}}{2\left(-9\right)}
Multiply 36 times -11.
x=\frac{-18±\sqrt{-72}}{2\left(-9\right)}
Add 324 to -396.
x=\frac{-18±6\sqrt{2}i}{2\left(-9\right)}
Take the square root of -72.
x=\frac{-18±6\sqrt{2}i}{-18}
Multiply 2 times -9.
x=\frac{-18+6\sqrt{2}i}{-18}
Now solve the equation x=\frac{-18±6\sqrt{2}i}{-18} when ± is plus. Add -18 to 6i\sqrt{2}.
x=-\frac{\sqrt{2}i}{3}+1
Divide -18+6i\sqrt{2} by -18.
x=\frac{-6\sqrt{2}i-18}{-18}
Now solve the equation x=\frac{-18±6\sqrt{2}i}{-18} when ± is minus. Subtract 6i\sqrt{2} from -18.
x=\frac{\sqrt{2}i}{3}+1
Divide -18-6i\sqrt{2} by -18.
x=-\frac{\sqrt{2}i}{3}+1 x=\frac{\sqrt{2}i}{3}+1
The equation is now solved.
-9x^{2}+18x=11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+18x}{-9}=\frac{11}{-9}
Divide both sides by -9.
x^{2}+\frac{18}{-9}x=\frac{11}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-2x=\frac{11}{-9}
Divide 18 by -9.
x^{2}-2x=-\frac{11}{9}
Divide 11 by -9.
x^{2}-2x+1=-\frac{11}{9}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{2}{9}
Add -\frac{11}{9} to 1.
\left(x-1\right)^{2}=-\frac{2}{9}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{2}{9}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{2}i}{3} x-1=-\frac{\sqrt{2}i}{3}
Simplify.
x=\frac{\sqrt{2}i}{3}+1 x=-\frac{\sqrt{2}i}{3}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}