Solve for x
x=-\frac{1}{2}=-0.5
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
Graph
Share
Copied to clipboard
-9x=6x^{2}+8+10x
Use the distributive property to multiply 2 by 3x^{2}+4.
-9x-6x^{2}=8+10x
Subtract 6x^{2} from both sides.
-9x-6x^{2}-8=10x
Subtract 8 from both sides.
-9x-6x^{2}-8-10x=0
Subtract 10x from both sides.
-19x-6x^{2}-8=0
Combine -9x and -10x to get -19x.
-6x^{2}-19x-8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-19 ab=-6\left(-8\right)=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -6x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-3 b=-16
The solution is the pair that gives sum -19.
\left(-6x^{2}-3x\right)+\left(-16x-8\right)
Rewrite -6x^{2}-19x-8 as \left(-6x^{2}-3x\right)+\left(-16x-8\right).
-3x\left(2x+1\right)-8\left(2x+1\right)
Factor out -3x in the first and -8 in the second group.
\left(2x+1\right)\left(-3x-8\right)
Factor out common term 2x+1 by using distributive property.
x=-\frac{1}{2} x=-\frac{8}{3}
To find equation solutions, solve 2x+1=0 and -3x-8=0.
-9x=6x^{2}+8+10x
Use the distributive property to multiply 2 by 3x^{2}+4.
-9x-6x^{2}=8+10x
Subtract 6x^{2} from both sides.
-9x-6x^{2}-8=10x
Subtract 8 from both sides.
-9x-6x^{2}-8-10x=0
Subtract 10x from both sides.
-19x-6x^{2}-8=0
Combine -9x and -10x to get -19x.
-6x^{2}-19x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -19 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361+24\left(-8\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-19\right)±\sqrt{361-192}}{2\left(-6\right)}
Multiply 24 times -8.
x=\frac{-\left(-19\right)±\sqrt{169}}{2\left(-6\right)}
Add 361 to -192.
x=\frac{-\left(-19\right)±13}{2\left(-6\right)}
Take the square root of 169.
x=\frac{19±13}{2\left(-6\right)}
The opposite of -19 is 19.
x=\frac{19±13}{-12}
Multiply 2 times -6.
x=\frac{32}{-12}
Now solve the equation x=\frac{19±13}{-12} when ± is plus. Add 19 to 13.
x=-\frac{8}{3}
Reduce the fraction \frac{32}{-12} to lowest terms by extracting and canceling out 4.
x=\frac{6}{-12}
Now solve the equation x=\frac{19±13}{-12} when ± is minus. Subtract 13 from 19.
x=-\frac{1}{2}
Reduce the fraction \frac{6}{-12} to lowest terms by extracting and canceling out 6.
x=-\frac{8}{3} x=-\frac{1}{2}
The equation is now solved.
-9x=6x^{2}+8+10x
Use the distributive property to multiply 2 by 3x^{2}+4.
-9x-6x^{2}=8+10x
Subtract 6x^{2} from both sides.
-9x-6x^{2}-10x=8
Subtract 10x from both sides.
-19x-6x^{2}=8
Combine -9x and -10x to get -19x.
-6x^{2}-19x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}-19x}{-6}=\frac{8}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{19}{-6}\right)x=\frac{8}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+\frac{19}{6}x=\frac{8}{-6}
Divide -19 by -6.
x^{2}+\frac{19}{6}x=-\frac{4}{3}
Reduce the fraction \frac{8}{-6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=-\frac{4}{3}+\left(\frac{19}{12}\right)^{2}
Divide \frac{19}{6}, the coefficient of the x term, by 2 to get \frac{19}{12}. Then add the square of \frac{19}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{6}x+\frac{361}{144}=-\frac{4}{3}+\frac{361}{144}
Square \frac{19}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{169}{144}
Add -\frac{4}{3} to \frac{361}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{12}\right)^{2}=\frac{169}{144}
Factor x^{2}+\frac{19}{6}x+\frac{361}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Take the square root of both sides of the equation.
x+\frac{19}{12}=\frac{13}{12} x+\frac{19}{12}=-\frac{13}{12}
Simplify.
x=-\frac{1}{2} x=-\frac{8}{3}
Subtract \frac{19}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}