Solve for p
p=-1
p=0
Share
Copied to clipboard
-9p^{2}-9p=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -9 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-9\right)±9}{2\left(-9\right)}
Take the square root of \left(-9\right)^{2}.
p=\frac{9±9}{2\left(-9\right)}
The opposite of -9 is 9.
p=\frac{9±9}{-18}
Multiply 2 times -9.
p=\frac{18}{-18}
Now solve the equation p=\frac{9±9}{-18} when ± is plus. Add 9 to 9.
p=-1
Divide 18 by -18.
p=\frac{0}{-18}
Now solve the equation p=\frac{9±9}{-18} when ± is minus. Subtract 9 from 9.
p=0
Divide 0 by -18.
p=-1 p=0
The equation is now solved.
-9p^{2}-9p=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9p^{2}-9p}{-9}=\frac{0}{-9}
Divide both sides by -9.
p^{2}+\left(-\frac{9}{-9}\right)p=\frac{0}{-9}
Dividing by -9 undoes the multiplication by -9.
p^{2}+p=\frac{0}{-9}
Divide -9 by -9.
p^{2}+p=0
Divide 0 by -9.
p^{2}+p+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+p+\frac{1}{4}=\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(p+\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor p^{2}+p+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
p+\frac{1}{2}=\frac{1}{2} p+\frac{1}{2}=-\frac{1}{2}
Simplify.
p=0 p=-1
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}