Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(-k^{2}-k\right)
Factor out 9.
k\left(-k-1\right)
Consider -k^{2}-k. Factor out k.
9k\left(-k-1\right)
Rewrite the complete factored expression.
-9k^{2}-9k=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-9\right)±9}{2\left(-9\right)}
Take the square root of \left(-9\right)^{2}.
k=\frac{9±9}{2\left(-9\right)}
The opposite of -9 is 9.
k=\frac{9±9}{-18}
Multiply 2 times -9.
k=\frac{18}{-18}
Now solve the equation k=\frac{9±9}{-18} when ± is plus. Add 9 to 9.
k=-1
Divide 18 by -18.
k=\frac{0}{-18}
Now solve the equation k=\frac{9±9}{-18} when ± is minus. Subtract 9 from 9.
k=0
Divide 0 by -18.
-9k^{2}-9k=-9\left(k-\left(-1\right)\right)k
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and 0 for x_{2}.
-9k^{2}-9k=-9\left(k+1\right)k
Simplify all the expressions of the form p-\left(-q\right) to p+q.