Solve for b
b=\frac{-2\sqrt{14}i+4}{9}\approx 0.444444444-0.831479419i
b=\frac{4+2\sqrt{14}i}{9}\approx 0.444444444+0.831479419i
Share
Copied to clipboard
-9b^{2}+8b=8
Add 8b to both sides.
-9b^{2}+8b-8=0
Subtract 8 from both sides.
b=\frac{-8±\sqrt{8^{2}-4\left(-9\right)\left(-8\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 8 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-8±\sqrt{64-4\left(-9\right)\left(-8\right)}}{2\left(-9\right)}
Square 8.
b=\frac{-8±\sqrt{64+36\left(-8\right)}}{2\left(-9\right)}
Multiply -4 times -9.
b=\frac{-8±\sqrt{64-288}}{2\left(-9\right)}
Multiply 36 times -8.
b=\frac{-8±\sqrt{-224}}{2\left(-9\right)}
Add 64 to -288.
b=\frac{-8±4\sqrt{14}i}{2\left(-9\right)}
Take the square root of -224.
b=\frac{-8±4\sqrt{14}i}{-18}
Multiply 2 times -9.
b=\frac{-8+4\sqrt{14}i}{-18}
Now solve the equation b=\frac{-8±4\sqrt{14}i}{-18} when ± is plus. Add -8 to 4i\sqrt{14}.
b=\frac{-2\sqrt{14}i+4}{9}
Divide -8+4i\sqrt{14} by -18.
b=\frac{-4\sqrt{14}i-8}{-18}
Now solve the equation b=\frac{-8±4\sqrt{14}i}{-18} when ± is minus. Subtract 4i\sqrt{14} from -8.
b=\frac{4+2\sqrt{14}i}{9}
Divide -8-4i\sqrt{14} by -18.
b=\frac{-2\sqrt{14}i+4}{9} b=\frac{4+2\sqrt{14}i}{9}
The equation is now solved.
-9b^{2}+8b=8
Add 8b to both sides.
\frac{-9b^{2}+8b}{-9}=\frac{8}{-9}
Divide both sides by -9.
b^{2}+\frac{8}{-9}b=\frac{8}{-9}
Dividing by -9 undoes the multiplication by -9.
b^{2}-\frac{8}{9}b=\frac{8}{-9}
Divide 8 by -9.
b^{2}-\frac{8}{9}b=-\frac{8}{9}
Divide 8 by -9.
b^{2}-\frac{8}{9}b+\left(-\frac{4}{9}\right)^{2}=-\frac{8}{9}+\left(-\frac{4}{9}\right)^{2}
Divide -\frac{8}{9}, the coefficient of the x term, by 2 to get -\frac{4}{9}. Then add the square of -\frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{8}{9}b+\frac{16}{81}=-\frac{8}{9}+\frac{16}{81}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{8}{9}b+\frac{16}{81}=-\frac{56}{81}
Add -\frac{8}{9} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{4}{9}\right)^{2}=-\frac{56}{81}
Factor b^{2}-\frac{8}{9}b+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{4}{9}\right)^{2}}=\sqrt{-\frac{56}{81}}
Take the square root of both sides of the equation.
b-\frac{4}{9}=\frac{2\sqrt{14}i}{9} b-\frac{4}{9}=-\frac{2\sqrt{14}i}{9}
Simplify.
b=\frac{4+2\sqrt{14}i}{9} b=\frac{-2\sqrt{14}i+4}{9}
Add \frac{4}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}