Solve for x
x\geq -\frac{39}{10}
Graph
Share
Copied to clipboard
18x+27\geq 4\left(2x-3\right)
Use the distributive property to multiply -9 by -2x-3.
18x+27\geq 8x-12
Use the distributive property to multiply 4 by 2x-3.
18x+27-8x\geq -12
Subtract 8x from both sides.
10x+27\geq -12
Combine 18x and -8x to get 10x.
10x\geq -12-27
Subtract 27 from both sides.
10x\geq -39
Subtract 27 from -12 to get -39.
x\geq -\frac{39}{10}
Divide both sides by 10. Since 10 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}