Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
-9\left(-\frac{3}{6}+\frac{1}{6}\right)-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Least common multiple of 2 and 6 is 6. Convert -\frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
-9\times \frac{-3+1}{6}-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Since -\frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
-9\times \frac{-2}{6}-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Add -3 and 1 to get -2.
-9\left(-\frac{1}{3}\right)-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{-9\left(-1\right)}{3}-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Express -9\left(-\frac{1}{3}\right) as a single fraction.
\frac{9}{3}-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Multiply -9 and -1 to get 9.
3-\frac{8}{\left(-2\right)^{2}}+\frac{1\times 5+2}{5}
Divide 9 by 3 to get 3.
3-\frac{8}{4}+\frac{1\times 5+2}{5}
Calculate -2 to the power of 2 and get 4.
3-2+\frac{1\times 5+2}{5}
Divide 8 by 4 to get 2.
1+\frac{1\times 5+2}{5}
Subtract 2 from 3 to get 1.
1+\frac{5+2}{5}
Multiply 1 and 5 to get 5.
1+\frac{7}{5}
Add 5 and 2 to get 7.
\frac{5}{5}+\frac{7}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{5+7}{5}
Since \frac{5}{5} and \frac{7}{5} have the same denominator, add them by adding their numerators.
\frac{12}{5}
Add 5 and 7 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}